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NOTE

The electron paramagnetic resonance, discovered in 1944 by the

Soviet physicist Ye.K. Zavoyskiy, is now one of the most fruitful phys-

ical research methods. Its use has yielded valuable data in the field

of solid state physics, magnetism, semiconductor physics, and nuclear

physics. In radio, this method has been the basis for the development

of a new' type of amplifier with exceedingly low internal noise level.

Electron paramagnetic resonance is widely used in modern chemistry,

and its study in biological objects has also begun.

The book contains a complete survey of research in the field of

electron paramagnetic resonance. The most detailed treatment has been

given to the theoretical and experimental results pertaining to ionic

crystals. It is intended for senior and graduate students as well as

for scientists working in physics, radio, chemistry, and biology.
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FOREWORD

Electron paramagnetic resonance, discovered in 1944 by Ye.K.

Zavoyskiy, has become one of the most powerful physical research

methods. The applications of electron paramagnetic resonance cover a

very wide field. In ionic crystals it permits a determination of the

magnetic-center energy-level structure, of the minor details of the

crystal-lattice structure, and of the parameters characterizing the

magnetization kinetics; the study of crystal-lattice imperfections is

particularly interesting. In liquid salt solutions, electron paramag-

netic resonance makes it possible to investigate the construction of

the solvate shells. Interesting data have been obtained on the proper-

ties of conauction electrons in metals and semiconductors. For nuclear

physics, paramagnetic resonance is a valuable method for the determina-

tion of nuclear moments and is one of the most effective means of nu-

clear polarization.

The paramagnetic resonance method is particularly fruitful in

chemistry. It made possible the first detection of free radicals in

amounts down to lolO-10 - 1 3 mole. A promising start toward a study of

paramagnetic resonance in biological objects has also been made.

Paramagnetic resonance has recently found a very important appli-

cation in radio, for the design of a new type of a low-noise amplifier.

All this has made paramagnetic resonance of great interest at

present not only to physicists but also to chemists, biologists, and

radio engineers.

I This book is the first attempt to provide as complete a survey as

IFTD-TT -62-1086/1+2



possible of the research made in electron paramagnetic resonance. To

limit the size of the book the authors had to forego in most cases de-

tailed derivations or detailed descriptions of experimental methods

which incidentally have already been described to a considerable ex-

tent in the available Russian-language literature. Theoretical and ex-

perimental results pertaining to ionic crystals have been dealt with

in greatest detail, since such crystals are most thoroughly investi-

gated by paramagnetic resonance methods.

The book covers all the basic literature on electron paramagnetic

resonance up to about 1959. The authors have attempted here to sum-

marize all the most important theoretical results and the experimental

data that are the most trustworthy.

Chapter I was written by both authors, Chapters II, IV, VII, and

§§5.5, 5.7 of Chapter V were written by B.M Kozyrev; Chapters III, VI,

VIII, and §§5.1-5.4, 5.6, 5.8, 5.9, and 5.10 of Chapter V were written

by S.A. Al'tshuler.

In conclusion, the authors express their deep gratitude to Ye.K.

Zavoyskiy for valuable discussions concerning many problems considered

in this book. They are also most grateful to R.Sh. Nigmatullin for re-

viewing the manuscript of Chapter II, to V.B. Shteynshleyger for re-

viewing the portion of the book devoted to paramagnetic amplifiers,

and to N.G. Koloskova for appreciable help in the compilation of the

tables.

S.A. Al'tshuler, B.M. Kozyrev

Kazan', 15 July 1959.
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PRINCIPAL NOTATION

A - hyperfine magnetic interaction constant;

a - spin-Hamiltonian constant;

a0 - Bohr radius;

B - hyperfine magnetic interaction constant;

c - velocity of light;

D, E - spin-Hamiltonian constants;

e - electron charge;

eeff - effective charge;

F - spin-Hamiltonian constant;

- spectroscopic splitting factor;

go - Lande factor;

gx' gy, gz - principal values of g-tensor;

N -- nuclear g-factor;

g(v) - function of the paramagnetic resonance absorption line shape;

H0 - intensity of static magnetic field;

Hr - amplitude of oscillating magnetic field;

kr- electron energy in the crystal electric field;

h = 27-rh- Planck's constant;

I - nuclear-spin quantum number;

J - electron shell total momentum quantum number;

J, Jik- exchange integral;

k - Boltzmann's constant;

L - electron shell orbital momentum quantum number;

M - momentum projection quantum number;
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Mk - kth moment of resonance line;

M - number of ions per unit cell;

Mm - number of magnetically nonequivalent ions per unit cell;

me - electron mass;

No - number of paramagnetic centers per cubic centimeter;

Nk - number of paramagnetic centers at the k level per cubic cen-

timeter;

n - population difference between two neighboring spin sublevels;

n. - population difference between two neighboring spin sublevels

in equilibrium state;

P - hyperfine quadrupole interaction constant;

P - radio-frequency field power absorbed per cubic centimeter of

the paramagnetic material;

PMM' - probability of system transition from the level M to the

level M' under the influence of the oscillating magnetic field;

Q- quality factor;

q- quadrupole moment of the nucleus;

qlk- saturation factor;

R - equilibrium distance from the center to the vertex of the oc-

tahedral complex;

S - electron spin quantum number;

31 - effective spin;

T - absolute temperature;

T1 - longitudinal paramagnetic relaxation time;

T2 - transverse paramagnetic relaxation time;

T21- cross-relaxation time;

v- average velocity of sound;

Z - nuclear charge;

0- Bohr magneton; I



ON - nuclear magneton;

7 - gyromagnetic ratio;

Av - width of paramagnetic resonance line, in cycles per second;

M - line width in oersteds;

9 - Debye temperature;

XO - static paramagnetic susceptibility;

X - complex paramagnetic susceptibility;

XI - real part of X;

X" - imaginary part of X;

LL - magnetic moment of the particle;

v - frequency of oscillating magnetic field;

v0 - Larmor precession frequency;

p - density of the substance;

a - ultrasonic absorption coefficient;

T - spin-lattice relaxation time;

- - spin-spin relaxation time.
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Chapter I

INTRODUCTION

§1.1. Elementary Magnetic Resonance

Many modern methods used to investigate properties of particles

with nonzero magnetic moments are based on a phenomenon which can be

called elementary magnetic resonance. The use of this method has en-

abled Rabi to propose his well-known method of determining nuclear mo-

ments [1], Alvarez and Bloch [2] to measure the magnetic moment of the

neutron, Detch [31 to determine the fine structure of the ground level

of positronium, Kastler [4] to discover a new optical effect, etc. The

same phenomenon serves as the basis for paramagnetic resonance and a

few other related effects which occur in substances that contain par-

ticles with nonzero magnetic moments.

The nature of elementary magnetic resonance can be explained with

the aid of simple classical concepts. Let a particle having a magnetic

moment L-be placed in a magnetic field with intensity 'Vo. Then the mo-

ment Pwill precess about Y0 with Larmor frequency v0 = goeHo/4Tmoc,

where go is the Lande factor, which takes on the values 2 and 1 for par-

ticles with pure spin and pure orbital electron magnetism, respectively.

Let us assume that a weak magnetic field 'l is applied perpendicu-

lar to the field !0 (Fig. 1.1) and rotates about !0 with frequency v.

If v = VO, then the additional rotating moment produced by the field

lis always so directed as to make the magnetic moment P try to occupy

Sa position in the equatorial plane. The result is a rapid change in

the orientation of the moment p.

-6-



Fig. 1.1. Elementary magnetic
resonance.

If the frequencies v and v0 differ noticeably from each other,

then the effect of the field Tl is negligible, since the motion it in-

duces in the moment rapidly goes out of phase with its precession.

For the same reason, the effect of the field will also be small if v =

= V0 , but the direction of rotation of Il is opposed to that of the

precession. As a result of the latter fact, the rotating field is re-

placed in practice by an oscillating one, which can be regarded as the

superposition of two fields of equal magnitude but rotating in oppo-

site directions at the same frequency.

It is natural to raise the question of the extent to which the

magnitude of the resonance effect depends on the accuracy with which

the frequencies v and v coincide. The sharpness of the magnetic reso-

nance will be the greater, the smaller the ratio H1/H .

Let us proceed to analyze the quantum relations in elementary mag-

netic resonance. Give the particle mechanical and magnetic moments, the

maximum components of which in the direction of IO will be denoted by

J and L, respectively. As is well known, p. = goPJ, and consequently
2J + 1 equidistant energy levels* will arise in the magnetic field I0

namely:
E =g$HM.(1.1)

where M is the magnetic quantum number, J > M > -J.

- -7 -



An alternating magnetic field ' cos 27rvt can induce magnetic di-

pole transitions between neighboring energy levels (AM = +1), provided

this field is perpendicular to Y0" and if the following resonance con-

dition is satisfied:

EM-N &Ig.HO=v. (1.2)

This is identical to the classical condition v = vO .

The alternating field will induce transitions from the lower en-

ergy levels to the upper ones and vice versa with equal probability.

The probabilities of these nonadiabatic transitions were calculated by

Guttinger [5], Majorana [6], and Rabi [1].

It can be readily calculated with the aid of (1.2) that the Lar-

mor precession frequency lies within the radio or microwave bands for

all the magnetic-field intensities encountered in modern experiments.

This is a very important practical fact, for it makes it possible to

use the highly sensitive and very convenient radio equipment for ex-

periments based on elementary magnetic resonance.

§1.2. Paramagnetic Resonance

We now proceed frum an examination of an isolated magnetic par-

ticle to macroscopic bodies, which contain many such particles. We

shall call such bodies paramagnetic regardless of the magnitude of the

diamagnetic component of the over-all magnetic moment of the substance.

The behavior of a paramagnet in a magnetic field depends essentially

on the interactions of the paramagnetic particles with one another and

with the surrounding diamagnetic particles. These interactions will

contribute to the establishment of a thermodynamic equilibrium, if the

latter is disturbed for some reason or another. Therefore, in a static

magnetic field '0 in which an equilibrium state has been attained and

the distribution laws of classical statistics are applicable, the pop-

ulations of the individual energy levels are determined by the Boltz-

-8 -



mann factor e . The populations of the lower energy levels

are larger than those of the upper levels, and therefore, if an alter-

nating magnetic field at resonant frequency is turned on, the number

of absorption events induced by this field exceeds the number of forced

emission events; consequently, the substance will absorb energy from

the radio frequency field. Thus, two opposing processes take place in

the paramagnet: the radio frequency field equalizes the populations of

the different magnetic levels, while the internal interactions tend to

restore the Boltzmann distribution, by converting the absorbed radio-

frequency field energy into heat.

The ultimate result is a stationary state in which the populations

of the magnetic levels stop varying and the radio frequency energy is

uniformly absorbed by the paramagnet. If at the same time the inten-

sity of the alternating magnetic field is very large, then the popula-

tions of the different magnetic levels will become equalized in the

stationary state, after which the absorbed energy will no longer in-

crease with increasing power of the radio frequency field (the so-called

saturation sets in).

We see that the effect of resonant paramagnetic absorption is

very tightly linked with processes that determine the kinetics of mag-

netization of paramagnets, or in other words, with paramagnetic relaxa-

tion. A very fruitful suggestion in the theory of paramagnetic relaxa-

tion was that of Casimir and du Pre (7, 8], namely that the magnetiza-

tion of the paramagnet be regarded as a two-stage process consisting

of the establishment of equilibrium within the "spin system," or the

system of magnetic moments of all the paramagnetic particles, followed

by energy exchange between the spin system and the "lattice," to which

all the remaining degrees of freedom of the paramagnet belong. Of

course, this consideration is possible if the interactions inside the

' -9-



spin system (spin-spin interactions) are much stronger than the inter-

actions between the spin system and the lattice (spin-lattice interac-

tions).

Unless ultra-low temperatures are considered, the lattice tempera-

ture can be regarded as invariant, since the specific heat of the lat-

tice greatly exceeds the specific heat of the spin system. The lattice

therefore acts like a thermostat in which the spin-system is immersed.

The spin system can also be assigned a certain temperature which gen-

erally differs from that of the lattice. The establishment of equilib-

rium between the spin system and the lattice can be regarded as an ex-

change of energy between these systems, leading to an equalization of

their temperatures. The speed of this process can be characterized by

the spin-lattice relaxation time, which we denote by T. The spin-lat-

tice relaxation mechanisms of different substances may differ greatly

from one another. Therefore the quantity , in addition to having a

strong dependence on the temperature of the paramagnet, is also char-

acterized by variations over a wide range on going from one substance

to another.

The rate at which equilibrium is established within the spin sys-

tem can be characterized by the spin-spin relaxation time T'. Obviously,

the very possibility of separating the paramagnet into a spin system

and a lattice implies that T' « T. Unlike the time T, the value of T'

depends very little on the lattice temperature. We note still another

difference between the spin-spin and spin-lattice relaxations. Equi-

librium is established within the spin system by energy exchange be-

tween different parts of the system, while the total energy of the spin

system remains constant. On the contrary, spin-lattice relaxation is

connected with a change in the energy of the spin system.

In his phenomenological theory of paramagnetic resonance, Bloch

- 10 -



(9] introduced two relaxation times, longitudinal T1 and transverse T2 .

Assume that the paramagnet is placed in a static field Y; then the

time T1 characterizes the rate at which equilibrium is established if

the magnitude of the field '0 is instantaneously changed, while its

direction is maintained constant; the time T2 determines the relaxa-

tion if the direction of the field Y0 is changed instantaneously while

its absolute value remains constant. The time T characterizes the

balancing process associated with the change in the spin-system energy,

and can therefore be identified with the spin-lattice relaxation time

T. The time T2 characterizes the speed of a relaxation process in

.which the spin-system energy is constant; it can be identified with

the time TI. However, the times T and T' are not always identical with

T1 and T2, since the concept of longitudinal and transverse relaxation

times T1 and T2 can always be introduced, whereas the times T and T'

are meaningful only when T >> T0. We do not consider here at all whe-

ther the two parameters T1 and T2 suffice to describe the complicated

process of paramagnetic relaxation. We shall see below that in some

cases a large number of parameters must be introduced (see Chapter V).

The internal interactions in the paramagnet not only cause it to

absorb energy from the radio frequency field, but also broaden the para-

magnetic resonance lines. Whereas for an isolated particle the sharp-

ness of the magnetic resonance depends on the ratio H1/H0 , for a para-

magnet the sharpness of resonance and the associated absorption-line

width are determined by the spin-spin and spin-lattice interactions,

provided there is no saturation. Let us assume that the spin-spin in-

teractions are much stronger than the spin-lattice ones. We take two

neighboring magnetic particles. Assuming them isolated, in first ap-

f proximation, we can ascribe to each particle a system of energy levels

(1.1). Let the levels of the two particles have magnetic quantum num-

F -11i-



bers MI and M2, respectively. The spin-spin interactions give rise to

a certain probability A' that the particles will exchange energy after

1 second; if the first particle makes in this case a transition to a

level with magnetic quantum number M1 + 1, then the second goes to the

level M2 - 1. The spin-spin relaxation time T' will have an order of

1/A'; this time, as we shall show, determines the lifetime of the par-

ticles at a definite magnetic energy level, and consequently the width

of the absorption line, due to the spin-spin interactions, can be es-

timated to be 1/T'.

If spin-lattice interactions dominate, then the concept of the

time T' becomes meaningless, but the spin-lattice relaxation time T

can be introduced if we consider the probability that an individual

paramagnetic particle will go over under the influence of thermal agita-

tion from one magnetic energy level to another. If this probability

per second is A, then T - 1/A and the width of the absorption line

will have an order of magnitude i/T. In general, we can estimate the

width of the absorption line to be l/ + l/'. No rigorous general re-

lation can be given between the width and the relaxation times, since

the width depends heavily on the shape of the absorption line.

It follows from what we know concerning the temperature dependence

of the relaxation times, that if the resonant paramagnetic absorption

line width is determined by spin-lattice interactions, it will decrease

rapidly with decrease in temperature; on the other hand, if the de-

cisive role is played by spin-spin interactions, the temperature de-

pendence of the width will be quite weak.

The internal interactions in the paramagnet determine also the

position and number of the paramagnetic resonant absorption lines. If

9 the form of the energy spectrum resulting under the action of the

field H0 were to be independent of the internal interactions, the sys-
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tem of energy levels would be determined as before by Formula (1.1) if

in addition the selection rules for transitions between these levels

under the influence of the alternating magnetic field were to be con-

served, then there would exist only one absorption line, the position

of which for a specified intensity H0 would be determined by the mag-

nitude of the Lande factor go. Actually, however, whereas in many para-

8

7-

2

Fig. 1.2. Plot of paramagnetic
resonance absorption in CrCI3
for X = 10.87 cm, T = 298°K
(Ye.K. Zavoyskliy, Soy. phys.i0, 197, 1946). 1) H, oersteds.

9

-4

Fig. 1.3. Splitting of the

ground level of the Cr 3 + ion
in a trigonal crystal field and
in a magnetic field H0 applied

parallel to the trigonal axis.

magnets the system of equidistant magnetic energy levels is conserved,

the & factor deviates from Its value for the free particle, owing to

internal interactions. Figure 1.2 shows a plot of paramagnetic reso-

-13 -



b)

Fig. 1.4. Photographs of the fine struc-

ture of the spectrum of Cr 3 + in Al 203
a) T0 parallel to the crystal trigonal

axis; b) !0 perpendicular to the crystal

trigonal axis.

nance absorption in chromium chloride; the absorption maximum corres-

ponds, as can be readily calculated with the aid of (1.2), to a factor

g 2, whereas for the ground state 4F3/2 of the free Cr3 + ion, the

Lande factor has a value 2/5. The absorption curve of Fig. 1.2 repre-

sents the energy absorbed by the paramagnet per second from the radio

frequency field, as a function of the intensity H0 of the static mag-

netic field, for in the overwhelming majority of cases the experiments

are carried out at fixed frequency v and variable fields H0.

In condensed media, as pointed out by Kittel [10], the g factor,

which determines the splitting of the energy levels in a magnetic field,

does not coincide with the factor that yields the gyromagnetic ratio,

the latter factor being obtained by measuring the magnetomechanical

effects. We shall therefore follow Kittel and call the g factor ob-

tained from experiments on paramagnetic resonance the "spectroscopic

splitting factor."

In many paramagnets, particularly those whose magnetism is not

purely spin, the system of Zeeman levels ceases to be equidistant. Con-

-14-



sequently, several absorption lines arise in place of one, and one ob-

serves, as is customarily stated, the fine structure of the paramag-

netic resonance spectrum. In single crystals, the form of the spectrum

can depend strongly on their orientation relative to the field !to. By

way of an example, Fig. 1.3 shows the splitting of the ground level of

a Cr3+ ion contained in an A1203 crystal, as a function of the inten-

sity of the magnetic field 0 applied parallel to the trigonal axis of

the crystal. In this figure e = EM/D, x = gPHo/D, and 2D is the initial

splitting. Figure 1.4 shows photographs of the fine structure of the

paramagnetic resonance spectrum for two different crystal orientations,

with the trigonal axis parallel and perpendicular to the field H0.

It is seen from Fig. 1.3 that in the absence of the fields H0 the

splitting of the ground level of the paramagnetic particles lies in

the radio-frequency region. Thus, resonance absorption of energy from

a radio frequency field can occur in many cases under the influence of

magnetic dipole transitions between sublevels that exist in the ab-

sence of a static magnetic field.

We note finally that the internal interactions change the selec-

tion roles. For example, transitions become possible between Zeeman

levels that are not neighboring, and for a paramagnet in which these

levels are equidistant this causes the appearance, in addition to the

principal absorption line corresponding to the Larmor frequency vO, of

satellites at frequencies 2vO, 3v0 , etc.

The form of the paramagnetic resonance spectrum depends on the

presence of magnetic moments in the nuclei of the paramagnetic atoms

(molecules). The magnetic moments of the nucleus and of the electron

shell interact with each other and with the static magnetic field H0

I, to produce a new system of energy levels for the paramagnet; an im-

portant factor here is whether the field H0 is strong enough to break
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Fig. 1.5a. Hyperfine structure of the

spectrum of Mn2 + in an aqueous solution
of MnCl2 at v = 9345 Mc.

a b ¢ c b

Fig. 1.5b. Effect of nuclear spin on the

spectrum of Mn2+ in an aqueous solution

of MnCl2 at v = 147 Mc. a) 55Mn2+ (g = 1);
b) free radical (g = 2); c) Fe3 + impuri-
ties in the ampoule glass (g = 4).

Fig. 1.6. Fine and hyperfine structures of

the spectrum of Mn2+ in manganese apatite at

v = l0I0 cps; each of the five fine-structure
lines is split into six hyperfine components.
(The narrow line in the center of the third
group is due to the free radical.)

the bond between the electron and nuclear moments, or whether the field

H0 is so weak that this bond remains unchanged. In the former case,
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the position of the paramagnetic resonance absorption lines due to the

magnetic moments of the electron shells of the atoms (molecules) is

conserved, but a hyperfine structure appears, in that each line breaks

up into several components, the number of which depends on the nuclear

spin. In the latter case, the picture of the spectrum is completely

changed, since the E factors that determine the positions of the ab-

sorption lines assume entirely different values.

Figure 1.5a shows the absorption spectrum observed in an aqueous

solution of MnCl2 at v = 9345 Mc in strong fields HO, ranging from

2900 to 3400 oersteds. The center of the spectrum corresponds to g =

= 2.000; this g factor would determine the position of the absorption

line were it not split by the presence of the magnetic moment of the

manganese nucleus. Figure 1.5b shows an absorption spectrum consisting

of one line and observed in the same solution of MnCl 2 at 147 Mc in

weak fields HO, ranging from -175 to +175 oersted. The absorption max-

imum corresponds here to a value of g which is practically exactly

equal to 1. Thus, the interaction with the nucleus in weak fields

reduces the & factor by one-half in our case. Figure 1.6 shows a typi-

cal fine and hyperfine structure of the spectrum of Mn2 + , observed in

an apatite single crystal.

A few other phenomena are closely related with paramagnetic reso-
nance absorption. It is easy to conclude that the effect of an alterna-
ting magnetic field on a paramagnet under the conditions of resonance
should be to change its magnetization. The result is the appearance of
a strong dependence of paramagnetic susceptibility on the frequency v;
if v is found equal to VO , the dispersion of susceptibility becomes

anomalous. The rotation of the plane of polarization of the radio
waves and other magnetooptical phenomena also become anomalous,
provided that the experimental conditions are such that the mag-
netic vector of the wave is perpendicular to the applied static
magnetic field and that the frequencies v and v0 are close to
each other.

We have considered different aspects of the paramagnetic resonance

effect, and we can now define it in general terms.
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Paramagnetic resonance is an aggregate of phenomena, connected

with quantum transitions occurring between energy levels of macroscopic

systems under the influence of an alternating magnetic field of reso-

nant frequency.

We refer in this definition to an aggregate of phenomena, for

along with paramagnetic resonance absorption, there is observed also

paramagnetic resonance dispersion, paramagnetic resonance rotation,

etc. In addition, we emphasize here that the phenomena are observed in

macroscopic systems, where spin-spin, spin-lattice and similar inter-

actions take place, which distinguishes paramagnetic resonance from

the resonance experiments made by Rabi with molecular beams and by Al-

varez and Bloch with neutron beams, etc.

Finally, whereas Debye dispersion and absorption of electromag-

netic waves in dielectrics occur as a result of electric dipole trans-

itions due to the electric component of the wave, the phenomena which

were are studying are due to magnetic dipole transitions, which are

excited by an alternating magnetic field.

In the overwhelming majority of cases, paramagnetic resonance is

investigated by superimposing on the paramagnet two magnetic fields, a

strong static field and a weak alternating one. However, we have seen

with Cr3 + as an example that magnetic dipole transitions are possible

under the influence of a radio frequency field even in the absence of

a static magnetic field. The phenomena connected with transitions of

this type are also naturally ascribed to paramagnetic resonance.

The great difference in the magnitude of magnetic moments of the

electrons and the nuclei makes it natural to distinguish between elec-

tron and nuclear paramagnetic resonance, although both the experimental

research methods and the theory of both effects have much in common.

One should include in nuclear paramagnetic resonance also nuclear quad-
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rupole resonance, a phenomenon due to magnetic dipole transitions oc-

4,, curring in the absence of an external static magnetic field between

* energy levels arising as a result of interaction between nuclear quad-

rupole moments and the electric field inside condensed media.

§1.3. Magnitude of the Effect

We proceed to establish certain quantitative relationships. Let

the ground level of a magnetic particle be split under the influence

of an external magnetic field and internal forces into q sublevels,

to which we shall assign the quantum numbers M and M'. According to

the quantum theory of radiation, the probability that the oscillating

magnetic field Hr cos 2r vt will cause a transition within one second

from the level M to the level M' is

i N IaM> 'P,, (1.3)

where <Kl x IMI> is the matrix element of the projection of the mag-

netic moment of the particle along the direction of the alternating

magnetic field, and pv is the mean spectral density of electromagnetic

energy, for which we can use in our case the expression

III= S".t Z ,  (1.4)

We have introduced here a form factor, which takes account of the fact

that the absorption line is not infinitesimally narrow but has an ap-

preciable width. The function g(v) reproduces the absorption line

shape and is normalized so that

If the temperature of the paramagnet is sufficiently high to make

EM - EM, = hv << kT, then for a volume of 1 cm3 , containing No magnetic

particles, the difference in the populations of the pair of levels M

and M' will be=, "' " N , HIN - -- 4 0-. (1.6)
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With the aid of (1.3), (1.4), and (1.6) we obtain the following expres-

sion for the power absorbed by a unit volume of the paramagnet in

transitions from the level M to the level M':

Px, = (NM - NM,) p.lm,.h.

--XT"- I <MjIIpI.>rI','Yf(,4 (1.7)

To obtain the total power P absorbed as a result of transitions be-

tween all the sublevels, it is necessary to sum over all the possible

values of M and M'. Since the static paramagnetic susceptibility is

[11]:

Xo=W Y,<Mjp.l >j2" (1.8)

we get

2)= X*^1 2S(' (1.9)

The total power is of interest if the matrix elements <MILx IM'> Z 0

for those pairs of levels which are spaced by equal intervals, for in

this case transitions between different level pairs produce one and

the same absorption line.

The Q of the resonant circuit loaded by the paramagnet can be de-

termined from the expression

2xV K(,( (1.10)

Maximum absorption, which occurs at a frequency v = vO, can be

related with the width Av, for if we write

g(,.) - (iLn

then we see from (1.5) that q = 1. The exact value of _ depends on the

absorption line shape; if the line has a Gaussian shape, then q = 0.939;

if it has a Lorentz shape, then q = 0.636 (see §1.4).

Formula (1.7) is valid if the field Hr is regarded as being suffi-

- 20 -



ciently small so as not to disturb the equilibrium distribution of the

particles over the energy levels. With increasing intensity of the

radio frequency radiation, these disturbances can occur and can lead

to saturation. Let us establish a quantitative criterion for the ex-

istence of this effect. We consider the simplest case of paramagnetic

particles, having only two energy sublevels. The population excess in

the lower sublevel above that in the upper sublevel will be denoted by

n; let n = n0 in the equilibrium state. From the definition of the

spin-lattice relaxation time we can conclude that in the absence of a

radio frequency field the transition to the equilibrium state will be

determined by the equation
di =•(1.12)

In the presence of a radio frequency field, the equation for n becomes

- • - 2 .pj,. (1.13)

After the stationary mode is established, we have

X =[I + 2 tpmm' (1.14)

If the energy level in the magnetic field is split into two sub-

levels, it can always be related to an effective spin S' = 1/2 and to

a spectroscopic splitting factor ., the calculation of which will be

described in Chapter III. We can therefore put

< Af jpx >-<--LjWj >'g
-yIap I+>gp. (1.15)

Substituting (1.3) in (1.14) and using (1.4), (1.11), and (1.15) we

obtain
X

,k,(Av) (1.16)

In the equilibrium state we have n/n O = 1, and this ratio tends to

zero as saturation sets in. The quantity qn = n/no is called the satura-
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tion factor. If the Larmor precession frequency in a field of intensity

Hr is designated by vr = gPHrAI, then the saturation criterion is the

following condition:

,;>A '-.(1.17)

§1.4. Paramagnetic Resonance as a Branch of the Theory of Magnetism

The contemporary state of the theory of paramagnetism is charac-

terized by a changeover from investigation of the magnetic properties

of matter under static conditions to phenomena observed in alternating

magnetic fields. Modern theory of dynamic paramagnetism is developing

along three trends: 1) adiabatic demagnetization; 2) paramagnetic re-

laxation, and 3) paramagnetic resonance.

The connection between these trends is so close, that some au-

thors [12] believe, for example, paramagnetic resonance to be part of

the theory of paramagnetic relaxation, whereas others [13], to the

contrary, regard paramagnetic relaxation as paramagnetic resonance due

to transitions at zero frequency. This close relation permits a gen-

eral theoretical analysis of many problems pertaining to all three

trends, and acquiring mutually complementary information on different

physical constants, such as the magnetic specific heat of substances,

relaxation times, etc.

Whereas in the study of the behavior of substances in a constant

magnetic field the main characteristic is the static susceptibility X0,

on going over to dynamic phenomena the susceptibility is best regarded

as a complex quantity, X = X' - iX". The magnetization component that

varies in phase with the field is determined by the dynamic suscepti-

bility X', while the energy absorbed by the paramagnet from the alter-

nating field is determined by the coefficient X". The task of the

4 . theory of paramagnetic absorption and dispersion is to establish the
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dependence of the coefficients X" and X' on the frequency of the alter-

nating field and on the intensity of the applied static field. The gen-

eral connection between the coefficients X' and X" is given by the

Kramers-Kronig relationships [141]

S....+con , _(_)=- ! '(") d,. (1.18)

Dispersion formulas in closed form were obtained only for gases

[15]. Naturally, for condensed systems, with their rather complicated

internal interactions, a simple solution can hardly be obtained for

this problem. It becomes necessary therefore to use approximate formu-

las. A comparison of (1.18) with v = 0 with (1.5) gives the connection

between X" and the line shape function g(v):

X7 () - 1 VX g K(1. 19)

In comparisons with experiment, g(v) is usually described either by

means of a Gaussian function, such as

g (,) =-I{- . .a .'}=,,0+,,(4 (1.20)

or by a Lorentz function

A"I + - - =gM.g,(V (1.21)
2x II (V= -,V"-" + T-AV, (V + VS) A-2I

Here v0 = gPH0 /h, a = AV/242 in 2, and Av is the absorption line at

high frequencies. The second terms in the right membf- s of (1.20) and

(1.21) vanish when v >> Av; the need for introducing these terms is

determined by the parity of the absorption effect relative to the

field H0 [16].

Experiments on electron paramagnetic resonance are carried out by

investigating the dependences of X' and X" on the magnitude of the
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Fig. 1.7. Curves showing para-
magnetic resonance absorption
and susceptibility dispersion
in MnSO4 for v = 9620 Mc (B.M.

Kozyrev, S.G. Salikhov, Yu.Ya.
Shamonin, ZhETF 22, 56, 1952).
i) Relative units; 2) H, oer-
steds.

-

-4$

Fig. 1.8. Curves of paramagnetic reso-
nance rotation in CuSO4 *5H2 0 (N.N. Ne-

primerov Izv. AN SSSR, ser. fiz., 18,
368, 1954). 1) HO, oersteds.

field H0 with v = const. Therefore the Kramers-Kronig relations should

be modified into (16]:

I C(H+H)-F(H*-H) dli,

(1.22)
F(H.)=- x'(. + H- X!' (H. -H) dH,

where we put F(H0 ) = X"(Ho) - VX0g2 (v); g2 (v) is a monotonically de-

creasing function, so that its specific expression is immaterial. Para-

magnetic resonance is investigated in most cases by measuring X"(H0 ).
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Paramagnetic dispersion under resonant conditions was first observed by

Zavoyskiy [171 in the salt MnS0 4 ; further measurements of x'(Ho) are

described in references [18]. Figure 1.7 shows typical paramagnetic

resonance absorption and dispersion curves.

Paramagnetic resonance can be observed not only by measuring X'

and X", but also by studying the rotation of the plane of polarization

of microwaves in paramagnets, induced by a static magnetic field. Many

wor1rs have considered the theory of this effect [19] and have made

suitable measurements [20]. A typical cp(H 0 ) curve is shown in Fig. 1.8.

The angle of rotation T of the plane of polarization and the para-

magnetic absorption are related by the simple integral equation (21]

00

Cj' + H (1.23)

Here e is the dielectric constant of the paramagnet.

The integral relations (1.22) and (1.23) enable us to monitor the

correctness of the form of the experimentally obtained paramagnetic-

resonance curves. Recently, research was initiated also on other ana-

logs of magnetooptical phenomena in the microwave region under magnetic

resonance conditions, such as the Cotton-Mouton effect [22].

The aggregate of the results obtained with the aid of paramagnetic

resonance provides important characteristics of various substances. It

is sufficient to mention the determination of the magnetic and mechan-

ical moments of atoms, molecules, or atomic nuclei, the times of para-

magnetic relaxation, etc.

§1.5. Paramagnetic Resonance and Spectroscopy

Paramagnetic resonance is a component part of spectroscopy, since

Sit makes it possible to determine the position of energy levels of mag-

netic particles. It is of interest to consider the features of para-
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magnetic resonance as compared with spectroscopy at optical frequencies.

1. We note first that the range of frequencies used in magnetic-

resonance experiments lies between 106 and 1011 cps. The use of these

frequencies, which lie beyond the infrared portion of the spectrum,

enables us to investigate with great accuracy energy-level splitting,

which is inaccessible or practically inaccessible to optical methods.

2. At radio frequencies the probability of spontaneous transi-

tions is very small, since it is proportional to v3 . It is therefore

necessary to deal only with forced absorption or emission in the study

of paramagnetic resonance.

3. Whereas optical spectra are due in the overwhelming majority

of cases to electrical dipole transitions between the energy levels,

paramagnetic resonance absorption lines arise exclusively as a result

of magnetic dipole transitions. Consequently, the Einstein coefficients

for induced absorption and emission are approximately 4 orders of mag-

nitude lower in the case of paramagnetic resonance.

4. In view of the foregoing, the effect of paramagnetic resonance

is a very fine one; it can be detected not alone by virtue of the high

sensitivity of the radio detection methods employed, but because of

the tremendous number of photons that come into play. Thus, I milli-

watt of power corresponds to n - 1020 photons of frequency 1010 cps

per second.

5. From the uncertain relations between the numbers of photons

and the phase of the electromagnetic wave it follows that in our case,

in view of the large value of n, the phase will be determined with

very great accuracy. A consequence of this is the possibility of con-

sidering the electromagnetic field in radio spectroscopy as being a

classical quantity.

6. At optical frequencies the line width is always very small com-
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pared with the fundamental frequency. In investigations of paramagnetic

resonance, the relation between these quantities becomes entirely dif-

ferent, since the interactions that bring about the broadening of the

lines can have the same order of magnitude as the energy splittings,

which determine the resonant frequencies. Therefore the width of para-

magnetic resonance lines is frequently comparable with the fundamental

frequency and can be measured with great accuracy. This uncovers great

possibilities for the investigation of different types of interactions

in paramagnets, by analyzing the shapes and widths of paramagnetic

resonance lines and the character of their dependence on different

factors.

7. The most important factors that determine the line width are

magnetic dipole interactions, exchange forces, local electric fields

produced by the surrounding magnetic particles, and finally thermal

motion; the natural line width of radio frequency spectra is quite

negligible.

8. Unlike conditions prevailing in optical experiments, the radia-

tion used in radio spectroscopy is so monochromatic, that the generated

bandwidth turns out to be incomparably narrower than the absorption

line width.

9. Paramagnetic resonance spectra are investigated not by measur-

ing the frequency of the incident radiation, but by measuring the nat-

ural frequencies of absorbing systems. This measurement is carried out

by varying the static magnetic field.

§1.6. History of the Discovery of Paramagnetic Resonance

Paramagnetic resonance was discovered by Ye.K. Zavoyskiy (23] in

1944, in Kazan'; his first experiments pertained to resonant absorp-

tion in salts of ions of the iron group, Zavoyskiy's discovery was pre-

ceded by certain theoretical assumptions concerning the nature of the
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expected effect. Following the well-known experiments by Stern and Ger-

lach on spatial quantization, Einstein and Ehrenfest [24] advanced sev-

eral ideas on quantum transitions between magnetic sublevels of atoms

under the influence of equilibrium radiation. On the basis of these

ideas, Dorfman suggested in 1923 the possibility of resonant absorp-

tion of electromagnetic waves by paramagnets, and called this pheno-

menon the photomagnetic effect [25).

In 1932, I. Waller [26] published at Pauli's suggestion a funda-

mental paper containing a quantum theory of paramagnetic relaxation in

solids. This paper served as the basis for further development of the

theory of dynamic phenomena in paramagnets, particularly paramagnetic

resonance.

In the middle thirties, Gorter and his co-workers [8] started a

systematic study of the absorption and dispersion of radio frequency

electromagnetic waves by paramagnets at 106_3 • lO7 cps in the presence

of static magnetic fields. However, Gorter's attempts at observing

paramagnetic resonance were not fruitful [27] in view of shortcomings

in the procedure and of the insufficiently high frequencies employed.

Zavoyskliy [23] developed new highly sensitive methods for the in-

vestigation of paramagnetic resonance: in place of determining the

amount of heat released by the paramagnet, as did Gorter, he started

to measure the attenuation of the high-frequency field energy as a re-

sult of absorption. To obtain fully resolvable paramagnetic resonance

absorption lines, he expanded the range of frequencies employed to

3.109 cps. He not only succeeded in discovering paramagnetic resonance,

but investigated many of its regularities, and also greatly extended

the region in which paramagnetic relaxation was investigated.

k The first theoretical interpretation of Zavoyskiy's experiments

was suggested by Ya.I. Frenkel' (28].
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A natural continuation of the study of paramagnetic resonance due,

to magnetic moments of electrons was the discovery of an analogous ef-

fect in atomic nuclei, made by Purcell [29] and Bloch [30] and their

co-workers two years after the publication of Zavoyskiy's papers.

Finally, in 1950, paramagnetic resonance due to transitions between

quadrupole energy levels of nuclei in crystals in the absence of an

external magnetic field was discovered by Dehmelt and Kruger [31].

A tremendous number of investigations based on this method have

been reported in recent years, in connection with the great progress

made in microwave techniques, on the one hand, and the observed rather

valuable applications of the paramagnetic resonance method to the solu-

tion of certain problems in solid state physics, atomic physics, chem-

istry, and engineering on the other.
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Manu-
script [Footnotes]
Page
No.

7 If the magnetic moment of the particle has both spin and or-

bital components, we assume that the field H0 is incapable

of disturbing the spin-orbit coupling.

8 If the magnetic particle is not isolated but is located, for
example, in a crystal lattice, then in some cases resonant
transitions are possible if the alternating and static mag-
netic fields are parallel (see Chapter III).
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Chapter II

MEASUREMENT METHODS

§2.1. Microwave Spectroscopes

Modern procedures for the measurement of paramagnetic resonance

are based on the determination of the change in some parameter of an

oscillating system containing a paramagnet; these changes may be due

to paramagnetic absorption, dispersion of the susceptibility, or rota-

tion of the plane of polarization in the investigated substance.

Methods of this type were first developed by Zavoyskiy both for

the frequency range 107_108 cps [1], and for higher frequencies, on

the order of lO9 cps [21, approaching the microwave band.

The experiments made prior to the discovery of paramagnetic

resonance by Gorter and his school [3], aimed at determining the non-

resonant paramagnetic losses at frequencies up to 1O7 cps, were car-

ried out by calorimetric determination of the heat released in the

paramagnet. The heat was determined from the rate at which the specimen

was heated by losses occurring in it. This. method, in view of its

low sensitivity and the difficulty in separating paramagnetic absorp-

tion from other types of losses (dielectric losses, losses due to elec-

tric conductivity) could not be used to investigate paramagnetic res-

onance. On the other hand, the procedure of measuring the dynamic sus-

ceptibility X, used by Gorter, although one of the indirect electrical

methods, was suitable only for very low frequencies. Thus, it was Za-

voyskiy himself who laid the groundwork for modern methods of magnetic

radio spectroscopy.
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Different measurement techniques, of course, are used for the

microwave band (v - 1010 cps), on the one hand, and for the radio band

(v = 106-109 cps) on the other. This has caused some authors to dis-

tinguish between radio frequency and microwave magnetic spectroscopy.

Such a distinction is, however, little Justified, since the nature of

the investigated phenomena is the same in both cases.

Let us first discuss the methods used in the microwave band.

Each microwave magnetic spectroscope consists of the following main

parts: 1) a microwave generator with stabilized frequency and stabil-

ized power supply, with provision for monitoring the frequency and the

power; 2) an absorbing cell, made in the form of a cylindrical or rec-

tangular resonant cavity; 3) a detector; 4) an amplifying and record-

ing unit, and 5) a source of constant magnetic field. In most cases

there is, in addition, 6) a unit for modulating the constant magnetic

field (see, for example, Fig. 2.2).

A resonant cavity containing a sample of the investigated sub-

stance is placed between the poles of an electromagnet in such a way

that the static and microwave magnetic fields acting on the substance

are mutually perpendicular. The sample is located in such a place in

,the cavity, where the microwave magnetic field is maximal and the elec-

tric field is minimal (in order to attenuate the nonmagnetic losses).

During the course of the measurements, the frequency of the microwave

generator exciting the electromagnetic oscillations in the cavity is

maintained constant while the intensity of the static magnetic field

is varied. This experimental procedure is made necessary by the fact

that a study of the dependence of the paramagnetic absorption coeffi-

cient on the frequency of the microwave field at H0 = const would in-

tadditional experimental difficulties, connected with the change

in the generator power with changing frequency of the radiation pro-
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duced by the generator.

There are two types of microwave magnetic spectrometers. In the

first the paramagnetic resonance absorption is investigated by deter-

mining the change in the power passing through the resonant cavity

containing the substance (transmitted-wave method), and in the second

it is determined from the change in the power reflected from the cav-

ity with the specimen (reflected-wave method).

The transmitted-wave method was first experimentally employed by

Cummerow, Holliday, and Moore [4], who showed that the coefficient of

paramagnetic absorption can be determined by measuring the power at

the output of the cavity resonator.

The second method permits the paramagnetic absorption coefficient

to be determined from the coefficient of reflection from the cavity

containing the investigated substance. Whitmer, Weidner, Hsiang, and

Weiss [5] constructed a microwave magnetic spectroscope operating on

the balanced-T bridge method using a dual tee. Measurement of the

power P resulting from the unbalancing of the bridge by the paramag-

netic losses, makes it possible to determine the reflection coefficient

,y, which is connected with the dynamic susceptibility of the paramagnet:

p,, , = Co.t (X" + X'. (2.1)

Both the transmitted-wave and the reflected-wave methods are used

in modern spectroscopes.

Before we proceed to consider individual specific installations,

which differ essentially in the methods used to indicate the transmit-

ted or reflected power, let us dwell on a few factors that determine

the sensitivity of a magnetic spectroscope. By virtue of (1.9) and

(1.19), the paramagnet specimen placed in an oscillating magnetic field

f Hr cos 27rvt absorbs a power P 7r~vX" 2. On the other hand, the power
absorbed by the cavity itself can be expressed by P0 = (L/%)vH;V/4,

- 34



where Q is the unloaded Q of the cavity and V is its effective volume.

Therefore the ratio of the power absorbed by the investigated specimen

to the power dissipated by the cavity itself is

P= 4%X"o (2.2). ---T

We see therefore that the apparatus has maximum sensitivity for the

measurement of the coefficient of paramagnetic absorption X" when the

unloaded Q of the resonant cavity is largest and when the cavity vol-

ume is smallest.

' M C r I M

Fig. 2.1. Equivalent circuit
used in the determination of
the sensitivity of a microwave
spectroscope.

For a specimen containing paramagnetic particles with spin S =

= 1/2, the absorption coefficient will be X" = Xov/v, where XO is the

static magnetic susceptibility of the specimen, v the frequency of the

oscillating magnetic field, and 6v the width of the resonance absorp-

tion line, expressed in frequency units. When S = 1/2 and g = 2, the

static magnetic susceptibility of one mole of substance is X0 = 0.38/T.

If the wavelength of the microwave generator is X = 3 cm, and the

width of the paramagnetic resonance line is on the order of 1 oersted,*

that is, -104 cm" , then X1mole 4 at room temperat re. Consequently,

in order for the Q of the cavity to decrease to about one half of the

loaded value %, we must place in the case of QO = 5000 approximately

10-5 mole of our paramagnet in the cavity, if we assume that the ef-

£fective volume is V = 2-3 cm3 .
To estimate the limiting sensitivity of the spectroscope we can,

- 35 -



following Bleany and Stevens (6], consider an equivalent circuit, in

which the resonant cavity is represented by a tuned network with re-

sistance r (Fig. 2.1). The microwave radiation is fed to the tuned net-

work through a self-inductance M from a generator with power P1 and

internal resistance R. The radiation is detected by a receiver, the

resistance of which is also R. If the generator has an angular fre-

quency w and is exactly tuned to the frequency of the resonant network,

then the voltage on the indicator is

7

V= QRa'

where r' = 2w2M2/R.

Assume that the paramagnetic absorption has changed the quantity

.r by an amount 6r; then the change in voltage will be

I

V . r' (RP, tr' (r- )' "

Since r' depends on the coupling with the resonant network, we can

tune the latter by changing the coupling (that is, the value of M).

The sensitivity will be maximal when the voltage 6V2 reaches a maximum,

which occurs when r = r'. Let us express 6V2 in terms of the power P2

entering the receiver. We have 6V2 = 6r(RP2 )l/2/(r + r'). This expres-

sion shows that the fraction change 6V2/(RP 2 )1/2 is equal to 6r/(r + r').

Although P2 increases with increasing coupling, on the other hand Q

decreases with the load. At the maximum, the change of the indicator

voltage, due to the paramagnetic absorption, will be

aV. - (RP,) I.

If the receiver has a noise figure N and a bandwidth df, then the

output signal will be equal to the noise at the output, provided the

condition 6V2 = (NkTdfR)
1/2 is satisfied.
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On the other hand, 6r/r is the ratio of the power absorbed by the

specimen to the power dissipated by the cavity, which as we have seen

is equal to 47X"Qo/V; thus, the minimum value of X" that can be de-

tected by the apparatus satisfies the condition

I
,, VINkrdf T.

XMIft A (2.3)

If we assume as before that QO = 5000 and X = 3 cm, then for N = 10,

df = 1 cps, a generator power of 40 milliwatts, and V = 2-3 cm3 , the

theoretical minimum value X"min will be -10- 12at room temperature. For

an absorption line width -10-4 cm-1 , this should correspond to a pos-

sibility of detecting a signal against a noise background from about

2.5.10 - 13 mole of paramagnetic particles with S = 1/2 (at 3000 K). The

sensitivity actually attained in the apparatus is as a rule much lower

than this figure and depends greatly on many factors, particularly on

the method used to measure the signal in the apparatus.

Depending on the method used to indicate the microwave paramag-

netic resonance spectra, the existing spectroscopes can be subdivided

into several groups: 1) direct current indication; 2) detection fol-

lowed by low-frequency amplification; 3) double modulation; and 4) the

superheterodyne method. Very recent papers [7] report the use of the

spin-echo method for the investigation of vary narrow electron para-

magnetic resonance lines; this method was previously used only for

nuclear paramagnetic resonance.

The first method is easiest to realize, but in view of its low

sensitivity it was used only during the first stages in the develop-

ment of magnetic radio spectroscopy, when the work was limited to in-

vestigations of relatively crude effects, occurring in nondilute para-

Lmagnets with broad and intense absorption lines. In this method, the
microwave signal was rectified after passing through the measurement
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cavity (or after being reflected from it) and was fed through a com-

pensation network to a sensitive galvanometer. The paramagnetic absorp-

tion curve was plotted "point by point," with the galvanometer deflec-

tions, which were proportional to the power flowing through the detec-

tor, being noted for different values of the constant magnetic field

intensity HO . For each value of H0 the cavity was first tuned to the

generator frequency.

To proceed to an investigation of the narrower and weaker absorp-

tion lines, observed in dilute paramagnets, it is necessary to use

methods that yield greater sensitivity and permit the spectral pattern

to be displayed on an oscilloscope or recorded on a chart.

A method satisfying these requirements employs modulation of the

static field H0 by a magnetic field of audio frequency; such modula-

tion was first used by Zavoyskiy [1 in 1944, in work carried out in

the radio frequency range. If the amplitude of the modulating field H,

for a specified intensity of the static magnetic field, encompasses

the region of paramagnetic resonance, then a suitable modulation should

take place in the power passing through the cavity (or reflected from

it). This power modulation can be amplified and fed to an oscilloscope,

the horizontal sweep of which is synchronized with the modulation

field. During each period of modulation, the field will go through the

resonant values of H0 twice; consequently the portion of the spectrum

encompassed by the modulation amplitude (or the entire spectrum, if

the amplitude is sufficiently large) will be displayed on the oscillo-

scope screen in the form of a double picture, symmetrical with respect

to the center, representing the dependeace X"(Ho). This method of in-

vestigating paramagnetic resonance is essentially convenient for an

initial determination of paramagnetic spectra; a study of the details

of these spectra is more conveniently carried out by using a modulation
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amplitude which is quite small compared with the width of the investi-

gated line. In this case as we gradually pass through H0 in the reso-

nant region, we obtain a curve showing the dependence of the derivative

dX"/d 0 on HO; it is usually recorded automatically on a chart.

Fig. 2.2. Microwave spectro-
scope with low-frequency modu-
lation of the magnetic field
(transmitted-wave method). 1)
Microwave generator; 2) fre-
quency control; 3) power con-
trol; 4) attenuator; 5) reso-
nant cavity with the substance;
6) crystal detector; 7) low-
frequency amplifier; 8) oscil-
loscope; 9) phase shifter; 10)
modulating coils.

£5 0

Fig. 2.3. Microwave spectroscope with low-
frequency modulation of the magnetic field
(reflected-wave method) [8]. 1) Stabilized
power supply; 2) klystron oscillator; 3)
wave meter; 4) attenuator; 5) phase shifter;
6) hybrid ring; 7) plunger; 8) crystal detec-
tor; 9) loop; 10) cavity; 11) specimen, 12)
low-frequency amplifier; 13) sweep; 141 elec-
tromagnet; 15) oscilloscope; 16) modulating
coils. A) cps.
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A block diagram of a microwave spectroscope with low-frequency

modulation of the magnetic field and with a transmission-type resonant

cavity is shown in Fig. 2.2.

Apparatus using the same field modulation but based on the re-

flected-wave method has been described by Manenkov and Prokhorov [8].

It is shown in Fig. 2.3.

The main factor limiting the sensitivity of spectroscopes of this

type is the low-frequency noise of the crystal detector. To avoid this

noise and thus increase the sensitivity, Beringer and Castle [9] con-

structed a spectroscope in which a bolometer was used as a detector.

The latter can detect power on the order of a milliwatt without appre-

ciable low-frequency noise. The Beringer and Castle apparatus uses the

transmitted-wave method. The microwave generator is frequency stabil-

ized; the narrow-band phase-sensitive amplifier is controlled by a 30

cps frequency, which is used to modulate the field HO. The experimen-

tally estimated sensitivity of this spectroscope does not differ

greatly from the theoretically attainable value. A block diagram of

the Beringer and Castle spectroscope is shown in Fig. 2.4. This spec-

troscope was constructed to investigate very weak paramagnetic reso-

nance lines, observed in rarefied gases.

Another method of increasing the sensitivity of radio spectro-

scopes was first used to measure paramagnetic resonance by Smaller and

Jasaytis [10]. It consists of using double modulation of the magnetic

field. The Bucknaster and Scovil spectroscope, built on this principle

[11], is no less sensitive than a spectroscope with a bolometer. The

double modulation principle consists in the following. The spectral

density of the crystal-detector noise is inversely proportional to the

frequency (at least in the interval 1-24.109 cps). Therefore, if in

addition to modulating at an audio frequency v1 with high amplitude
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the magnetic field is modulated additionally at a frequency v2, suffi-

ciently high to cause the fraction of the low-frequency noise in excess

of the thermal noise in the crystal detector to be negligibly small,

and if amplification at frequency v2 is introduced, then the sensitiv-

ity (compared with the amplification at the low frequency) should in-

crease greatly. We note that the amplitude of the high-frequency modu-

lation method does not exceed half the width of the investigated spec-

tral line (12].

Buckmaster and Scovil used in their spectroscope a cylindrical

cavity, operating in the Hill mode; the source of microwave power is

a generator operating at X = 1.2 cm. The first-modulation frequency is

vI = 60 cps, while that of the second modulation is v2 = 462.5 kcs. A

block diagram of this spectroscope is shown in Fig. 2.5. The microwave

power is fed from the reflex klystron to a transmission-type cavity to

a diode crystal detector. Connected ahead of the cavity are devices to

control and monitor the received microwave power and to measure the

wavelength. The video signal obtained at the output of the crystal de-

tector passes through an amplifier tuned to 462 kcs with gain 106 and

bandwidth 8 kcs; the amplification is to a level at which the signal

can be detected linearly. Either an ordinary linear or a phase-sensi-

tive detector can be used, the output of the detector being fed to an

oscilloscope. In the former case the oscillogram represents the modu-

lus of the derivative of the line shape, and in the latter the deriva-

tive itself. The time sweep voltage of the oscilloscope is obtained

from a phase shifter fed by the power source of the low-frequency mod-

ulation of the magnetic field (Helmholtz coils). If narrow-band amp-

lification is used, the superposition of a magnetic field of frequency

vI is replaced by a slow and linear variation of the field H0 .

The most difficult to attain is the high-frequency modulation,
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Fig. 2.4. Microwave spectro-
scope using a bolometer [9].
1) Microwave stabilized oscil-
lator; 2) cavity; 3) bolometer;
4) DC bridge; 5) 30 cps amp-
lifier with high gain- 6) syn-
chronous amplifier; 75 30 cps
generator, 8) 30 cps power amp-
lifier; 95 galvanometer with
large time constant; 10) modu-
lation coils.

A7 S

Fig. 2.5. Microwave spectro-
scope with dual field modula-
tion [11). 1) Stabilized os-
cillator; 2) resonant cavity
with substance; 3) detector;
4) amplifier for the frequen-
cies v2 + Av; 5) linear detec-

tor; 6) amplifier for vl; 7)

oscilloscopes; 8) phase-sensi-
tive detector; 9) phase
shifter for v2 ; 10) modulation

coils for v2 ; 11) modulation

coils for VI; 12) phase

shifter for v,; 13) frequency

control; 14) power control.

for it is necessary for this purpose to introduce a radio frequency

magnetic field inside the resonant cavity. For this purpose the reso-
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nant cavity is frequently slotted in a plane passing through its axis.

If the width of the slot is small compared with the wavelength X, then

the Q of the cavity is changed little. The radio frequency field can

be produced effectively only by modulation current flowing over the

internal surface of the cavity. Such a current can be made sufficiently

large to ensure a radio frequency magnetic field with amplitude up to

50 oersted at the location of the investigated substance.

An experimental estimate of the sensitivity of the Bucknaster and

Scovil spectroscope operating with amplification at 462 kcs and an

amplifier bandwidth of 8 kcs has shown that 10-l1 of a mole of free

radical with a line width 3.5 oersted at 2900K produces a signal/noise

ratio of 2/1 for the modulus of the derivative of the line shape. Cal-

culation has shown that using amplification on a very narrow band (1

cps) the maximum sensitivity should be on the order of 10- 13 mole of

free radical at 2900K.

The dual modulation principle is used also in the microwave mag-

netic spectroscope of Semenov and Bubnov [13]. The high and low modu-

lation frequencies are 975 kcs and 50 cps, respectively. The depth of

the low-frequency modulation is on the order of 300 oersted. The spec-

trometer is equipped with an automatic frequency control for the kly-

stron oscillator against the operating cavity. A voltage of -15 mv is

fed to the klystron repeller from the automatic frequency control os-

cillator (630 kcs). This voltage frequency-modulates the microwave os-

cillations produced by the klystron. If the klystron frequency devi-

ates from that of the cavity, the microwave oscillations are ampli-

tude-modulated. The phase of this "automatic frequency control signal"

is determined by the sign of the frequency deviation, and the ampli-

tude is proportional to the magnitude of this deviation. After detec-

tion of the microwave oscillations, the control signal is amplified by
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a tuned amplifier (630 kcs, gain-105) and is fed to a phase-sensitive

detector, from which it is applied to the klystron repeller. The end

result is that the klystron frequency is set at the resonant frequency

of the cavity containing the investigated substance.

Because of the device just described, the microwave spectroscope

of Semenov and Bubnov has rather high operating stability. It is there-

fore most suitable for investigations of the course of chemical reac-

tions. If an oscilloscope is used for registration, its sensitivity

corresponds to -4.10-
10 mole of diphenylpicrylhydrazyl and -8.10

- 12

mole of the same substance if slow chart recording is used. A block

diagram of the spectroscope is shown in Fig. 2.6.

The superheterodyne measurement method was first used for the

study of paramagnetic resonance by England and Schneider [14]. It is

based on the use of a balanced T bridge (or hybrid ring), to which

power is applied from a measuring klystron of frequency fI and from an

auxiliary klystron of frequency f2 " The frequency difference fl- f2

is made equal to several times ten megacycles. This is the intermediate

frequency used to amplify the signal resulting from the unbalance of

the bridge upon occurrence of paramagnetic absorption. The low-

frequency noise of the crystal detector is thus made negligibly small.

However, with increasing fl - f2, the noise of the intermediate-

frequency amplifier increases. Taking both factors into account, the

theoretical optimum of f. - f2 lies close to 30 megacycles [15].

An example of a block diagram of a spectroscope with superhetero-

dyne detection [16] is shown in Fig. 2.7.

If there is no paramagnetic absorption, there should be no signal

in the fourth arm of the bridge provided the tuning and the balancing

S are exact. Absorption produces an unbalance by changing the reflection

coefficient and causes the power in klystron 1 to begin to flow in the
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Fig. 2.6. Microwave spectro-
scope with dual modulation and
with automatic frequency con-
trol [13]. 1) Cavity with spec-
imen; 2) microwave crystal de-
tector; 3) amplifier (v = 975
kcs); 4) synchronous detector
(v = 975 kcs); 5) high fre-
quency oscillator (v = 975 kcs);
6) automatic frequency control
amplifier (v = 630 kcs); 7) DC
amplifier; 8) phase sensitive
detector for automatic fre-
quency control; 9) automatic
frequency control generator
(v = 630 kcs); 10) klystron
oscillator (X = 3.2 cm); 11)
ferrite decoupler; 12) vari-
able attenuator. A) 110 v; B)
out I; C) out II; D) cps.

fourth arm and to mix in the crystal mixer with the power from the

auxiliary klystron, thus producing an intermediate frequency signal

which is fed to the amplifier.

It must be borne in mind that the power 6P reflected in the fourth

arm is not equal to the absorbed power AP, but is only a fraction of

the latter; according to Gordy [17]

ap AP.

where P is the total power in the cavity.

The different types of microwave magnetic spectroscopes, which we

have discussed briefly, make it possible to study with great accuracy

the position of the paramagnetic resonance line, and with a somewhat

S lesser accuracy the line shape.

The accuracy with which the line position is determined depends
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Fig. 2.7. Microwave spectro-
scope operating on the super-
heterodyne principle [161. 1)
Klystron; 2) hybrid ring (or
T-bridge; 3) resonant cavity;
4) local heterodyne; 5) mixer;
6) intermediate frequency amp-
lifier; 7) automatic frequency
control; 8) video amplifier;
9) oscilloscope; 10) phase
shifter; 11) modulation coils;
12) frequency multiplier; 13)
receiver; 14) proton flux
meter.

4,91 4aftmp B

Fig. 2.8. Proton flux meter[1BI. 2) Coil with specimen in

magnetic field; 2) to amplifier
and oscilloscope; RFC) radio
frequency coils. A) ohm; B) f
c) km;D) FC E) 250 v; F)

~essentially on the accuracy with which the intensity of the constant

magnetic field H0 is measured at resonance, since the measurement of

Lthe resonant frequency v can frequently be made without large errors.
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The determination of the intensity of the magnetic field reduces

as a rule likewise to a measurement of a certain frequency, namely the

frequency of proton paramagnetic resonance, observed at a given mag-

netic field. Flux meters constructed on the proton-resonance principle

are presently used in all cases where precision measurement of the

magnetic field is required. One of the methods of using proton reso-

nance for the determination of the paramagnetic resonance line posi-

tion is illustrated in Fig. 2.7. The frequency of the proton flux

meter is varied until the positions of the maxima of the electron and

proton resonances, observed on the screen of a double-beam oscillo-

scope, occur at one and the same abscissa. One of the possible proton

flux meter circuits [181 is shown in Fig. 2.8.

Understandably, the narrower the line and the higher the fre-

quency at which the paramagnetic resonance is measured, the more accu-

rately can the line position be determined. For lines with AH - 1 oer-

sted and at frequencies corresponding to the millimeter band, the ac-

curacy with which the effective Z factor is determined reaches hun-

dredths of a percent. On the other hand, in nondilute paramagnetic

salts with broad lines, the effective S factor can be determined only

with accuracy not higher than several tenths of a percent, and usually

even with lower accuracy.

The study of the paramagnetic resonance line shape is a more dif-

ficult problem. Because paramagnetic absorption (X") is always accom-

panied by dispersion of the magnetic susceptioility (X'), the observed

X"(Ho) line should generally speaking always be deformed to some degree

or another as a result of the X' admixture. It is easy to show, how-

ever (8], that the influence of the dispersion on the line shape can

be neglected provided the following two conditions are satisfied: 1)

the natural frequency of the cavity is strictly equal to the frequency
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of the microwave oscillator under the conditions of paramagnetic reso-

nance, and 2) the amount of paramagnetic substance chosen for the

measurement is sufficiently small to make the paramagnetic losses in

the specimen small compared with the over-all losses in the cavity.

Several special methods were also developed to separate the X"(Ho)

or X'(Ho) effect in pure form [19-21]. These methods are important if

condition 2) cannot be satisfied for one reason or another.

A procedure for the measurement of the paramagnetic rotation of

the plane of polarization is developed in [22].

For lack of space we shall not stop to describe individual units

and parts of the apparatus used in microwave spectroscopes. This de-

scription can be found in the books by Gordy, Smith, and Trambarulo

[23], Strandberg [24], Ingram [16], and also in the specialized radio

literature.

We confine ourselves nere merely to a description of devices used

in low-temperature and high-temperature measurements of paramagnetic

resonance.

The first extensive investigations of paramagnetic resonance

spectra at liquid hydrogen or helium temperatures were set up by

Bleaney and his co-workers in Oxford [16]. To work at X = 1.25 cm and

at liquid nitrogen and liquid hydrogen temperatures they used a special

type of cylindrical cavity with inside diameter 12 mm and height from

6 to 11 mu, with the input and output coupling apertures made in the

upper cover of the cavity, for easier placement of the latter in a

Dewar flask. The investigated crystal was mounted on a small platform,

covering a third aperture located in the center of the same top cover

of the cavity. This platform was secured to a long thin-walled tube

U made of silver, so that the crystal could be rotated in a chosen plane

through any angle relative to the external magnetic field. Wave guides
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supplying microwave power to the cavity were made of thin-wall silver,*

with inside dimensions 2.5x6 mm, and filled with distyrene almost to

the upper uncooled end, where they gradually taper down. A section

through such a cavity is shown in Fig. 2.9. Similar devices are used

also for other wavelengths.

Fig. 2.9. Cavity for measure-
ments at low temperatures on a
wavelength of 1.25 cm [16].

- - - - - - - -

- - - -
l!- -

-
-

-
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Fig. 2.10. Cavity with aper-
tures for measurements at low
temperatures.

In addition to the foregoing measurement method, others are also

used at low temperatures. In particular, the use of a rectangular cav-

ity operating on the H0 12 mode or a cylindrical one on the H0 11 mode

offers great advantages. The distribution of the magnetic force lines

of the microwave field in such cavities is shown in Fig. 2.10. An aper-
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ture is cut in the narrow wall of the cavity (or in the end of the

cylinder), and a vessel made of foamed plastic containing the investi-

gated substance is inserted in this aperture [13]. If the required con-

ditions regarding the position and dimensions of the aperture are sat-

isfied, the presence of this aperture does not influence greatly the Q

of the cavity, and consequently the sensitivity of the apparatus. Of

course, the necessary condition for any measurement with a Dewar flask

or with a foamed-plastic vessel, placed inside a cavity, is high sta-

bility of the spectroscope, so that the boiling of the cooled liquid

does not cause any distortion in the observed spectrum. Such a pro-

cedure makes it possible to make measurements at both low and high

temperatures [25]. Investigations at high temperatures can also be

carried out with the aid of a special heater described in [26].

It must be mentioned that in some cases (for example, in the in-

vestigation of relaxation time by the method of paramagnetic resonance

line saturation) it becomes necessary to use high amplitudes of the

microwave magnetic field. It is customary to use pulse techniques for

this purpose [27, 28].

§2.2. Methods of Measurements in the Radio Frequency Band

Two types of methods are used at present to measure X"(H) in the

radio frequency band: one can be called the method of reaction on the

generator, and the other is based on the determination of the change

in Q of a resonant circuit (or a cavity) resulting from the paramag-

netic losses.

As already mentioned, Gorter's first investigations of nonreso-

nant paramagnetic absorption, observed at low frequencies, were car-

ried out by a direct calorimetric method. The inconvenience of this

£ method, and the fact that it cannot be employed at higher frequencies,

have induced Zavoyskiy to go over to indirect electric methods of de-
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termining the paramagnetic losses. He developed the method of reaction

on the generator (1, 2], which is widely used at present to study both

electron and.nuclear paramagnetic resonance [29, 30].

When working in the radio frequency band, the investigated sub-

stance is usually placed not in a resonant cavity, but in a self-induc-

tance coil, comprising part of the tank circuit of an electronic self-

oscillator or inductively coupled to the latter. The Zavoyskiy radio

frequency measurement procedure is based on the fact that a change in

the active power load AW of the generator producing the electromagnetic

oscillations causes, if certain conditions are satisfied, a propor-

tional change in the grid current, Alg, or in the anode current, AIa,

of the generator. AW should be proportional to Al or Aa if the power

dissipated by the substance as a result of paramagnetic absorption is

small compared with the over-all losses in the tank circuit.

Work with magnetic spectrographs in the radio frequency band be-

comes much more convenient, and their sensitivity is greatly increased,

if the constant magnetic field is modulated by a low-frequency field.

This modulation, to which we already referred in the preceding section,

was first used by Zavoyskiy precisely for the radio frequency band.

The simplest schematic diagram of a setup operating by the Zavoy-

skiy method is shown in Fig. 2.11.

To measure the absolute values of the paramagnetic absorption in

the radio frequency band, a very simple method was used in [31]. This

method consisted of determining the change in the Q of the tank-circuit

inductance coil with the aid of a somewhat modified Q meter. These

changes in the Q are proportional to the value of X":

Z where I is the filling factor of the coil. Similar setups were proposed

earlier for the measurement of nuclear magnetic resonance (30].
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Fig. 2.11. Block diagram of a
radio spectroscope operating
by the method of reaction on
the generator (1 ]. 1) Modula-
tion winding of the electro-
magnet; 2) to low-frequency
amplifier.

Radio spectroscopes in which the absorbing cell is the tank cir-

cuit inductance coil have advantages in that it is more convenient to

place the investigated substance in the high frequency field and it is

easier to carry out the measurements at either low or high temperatures.

However, the low Q of the coils makes such setups not always suffi-

ciently sensitive. Therefore in some cases when particularly high sen-

sitivity is required, the inductance coil of the radio spectroscope is

replaced by a high Q cavity. A spectroscope of this type was con-

structed by Feher and Kip [321 to measure paramagnetic resonance in

metals. A block diagram of this spectroscope is shown in Fig. 2.12.

The use of a synchronous detector has resulted in this apparatus in a

further improvement in the signal/noise ratio.

To conclude this chapter, let us dwell briefly on the sources of

constant magnetic field used in the investigation of paramagnetic reso-

nance. In experiments carried out in the microwave band, where the

resonant values of H0 usually range from 3000 oersteds upwards the only

S suitable sources capable of producing such fields are electromagnets.

Inasmuch as paramagnetic resonance lines are in the majority of cases
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tens and sometimes even hundreds of oersteds wide, no stringent re-

quirements are imposed on the homogeneity of the magnetic field. In

individual cases, however, very narrow lines can also be observed, on

the order of tenths of an oersted. For such measurements electromag-

nets such as employed in nuclear magnetic resonance are used, with

suitable stabilization [29].

Fig. 2.12. Block diagram of a radio spectro-
scope operating on the principle of measur-
ing Q with a phase-sensitive detector [32].
1) Modulation coils used to produce a sinus-
oidal magnetic field; 2) modulation coils
used to obtain a slowly varying magnetic
field; 3) coils used to obtain a constant
magnetic field; 4) high-Q cavity (Q = 1000-
1500); 5) high-frequency generator; 6,7)
matching transformers; 8) vacuum tube de-
tector; 9) narrow band amplifier; 10) syn-
chronous detector; 11) amplifier to supply
the coils; 12) oscilloscope with DC ampli-
fier; 13) amplifier for automatic recorder;
14) sawtooth voltage generator; 15) generator
for sinusoidal reference voltage; 16) auto-
matic recorder; 17) power supply for coils 3.

In measurements of electron paramagnetic resonance at radio fre-

quencies it is possible to produce the constant magnetic field not

only with electromagnets but also with Helmholtz coils, since the re-

quired field intensity is not large in this case. A determination of

the positions of the paramagnetic resonance lines in the radio fre-

quency band is carried out either by measuring the resonant field in-

U tenuity H0 with a proton flux meter or by means of a standard substance,

such as diphenylpicrylhydrazyl, for which the value of the S factor is
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known with sufficient accuracy.
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Manu-
script (Footnotes]
Page
No.

35 A line width of this order is usually observed in free rad-
icals.

49 Alloys of low heat conductivity (melchior, stainless steel,
etc.) are presently used most frequently for this purpose.

-55-



Manu-
script (List of Transliterated Symbols]
Page
No.

46 PqK = RChK = radiochastotnyye katushki - radio-frequency coils
52 c = s = setochnyy = grid
52 K = k = kontur = tank circuit
52 c = sv - [svyazi = coupling]
52 11 - P - [not identified]
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Chapter 3

THEORY OF SPECTRA OF IONIC CRYSTALS

§3.1. Introduction

The most widely investigated among the various classes of para-

magnets are ionic crystals. Paramagnetic properties are possessed by

ionic crystals containing transition group elements, for only the

atoms of these elements retain unfilled electron shells during the

crystal formation process.

To construct a theory for the energy structure of ionic paramag-

netic crystals it is necessary first of all to take into account the

interactions of the electrons with one another and with the nucleus

within each ion, and then take into account the electrostatic, mag-

netic, and exchange interactions between the different ions, and

finally the effect of the external magnetic field. Magnetic and ex-

change forces produce narrow quasi-continuous energy bands, for these

forces are small in substances with not too high a magnetic concentra-

tion, and the number of possible orientations of the moments of the

magnetic particles of the crystal relative to one another is tremen-

dous. As a result, the magnetic and exchange interactions do not in-

fluence as a rule the form of the paramagnetic resonance spectrum* and

cause only a broadening of individual lines. We shall therefore dwell

on these interactions in Chapter 5, which is devoted to the absorption

line shape.

We shall take an approximate account of the electrostatic inter-

action between free ions by assuming that each ion is in a certain av-
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erage electric field produced by all the surrounding particles. We

shall call this the crystalline field for short. The action of the

crystalline field is always weaker than the Coulomb interaction be-

tween the electrons in the atom. We can therefore use the self con-

sistent field method and speak of the configuration of the electrons

forming the unfilled shell of the paramagnetic ion. The electron con-

figurations corresponding to various transition groups are 3dn for the

iron group (from Ti to Cu), 4dn for the palladium group (from Zr to

Ag), 4fn for the rare earth group (from Ce to Yb), 5 dn for the plat-

inum group (from Hf to Au), and 6d5 fn for the actinides (from U on).

The self consistent field method does not take full account of

the electrostatic interaction between electrons. The calculations,

which are usually carried out by the perturbation method, therefore

call for a knowledge of the relationship between the unaccounted for

part of the electrostatic repulsion between electrons, the magnetic

couplings between their spin and orbital moments, and the forces of

the crystalline field. Three cases are possible. The crystalline field

is called weak if it is unable to break the bond between the orbital

and spin moments of the entire unfilled electron shell. The field is

assumed average if its action is stronger than the spin-orbit coupling

of the electrons, but much weaker than the interaction between in-

dividual electrons. Finally, the field is called strong if its action

is much stronger than the bond between the electrons of the unfilled

shell. The first two cases are realized in hydrated salts of rare-

earth elements and the iron-group elements, respectively. A strong

field is not encountered in pure form, for if the crystal field becomes

considerably stronger than the interaction between individual elec-

S I trons, then the covalent bond between the paramagnetic atom and its

immediate vicinity always begins to assume an appreciable role in
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place of the ionic bond. The character of splitting of the energy

levels of paramagnetic ions by the crystalline field depends to a

great degree on the symmetry of this field. This has enabled Bethe []

to present a qualitative solution of this problem with the aid of

group theory. Tables 3.1 and 3.2 indicate how the electron levels are

split for the cases of integral and half-integral momentum quantum

number J. The third and following columns show how many energy sub-

levels are produced in a field of corresponding symmetry, and the num-

bers in the parentheses denote the degree of degeneracy of these sub-

levels.

We see from Table 3.2 that in the case of a half-integer spin the

energy sublevels always remain at least doubly degenerate. This fact

is the consequence of Kramers' general theorem [2], which is of funda-

mental significance in the theory of paramagnetism. The theorem states

that the electric forces are unable to eliminate completely the degen-

eracy of the energy level of a system containing an odd number of elec-

trons. It follows therefore that paramagnetic resonance can always be

observed in paramagnetic ions containing an odd number of electrons,

for by eliminating the degeneracy of the ground states, the magnetic

field can produce splittings that lie in the radio frequency range. If

the number of electrons is even, then all levels may turn out to be

simple even in the absence of a magnetic field, and the distance be-

tween them may be so large that no practically attainable magnetic

fields can bring them close enough together to make resonant absorption

of radio frequency radiation possible.

The influence of the crystalline field on the static susceptibil-

ity of paramagnetic salts was first considered by Van Vleck [3]. Penney

, and Schlapp made detailed calculations for several rare-earth salts

(4] and iron-group elements (5]. Analogous calculations were made then
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TABLE 3.1

BCTencaab 1 PWOaOMOue S Dole

I OMP03~e itiipmsc I IO
,mu r . -azpe I . uecOA lMmuroIaaboN teTpArousabOA I pouduiecao*.~u 20 CUMMOTPUN *)NOPH c J14 CNU4TUU 1 CNMMOTPU

Ms 2 -- ' " 3 1'" 4 cur"N ' 16" ' "

0 () (1) (.) (I) 7 no-oe
I 3 1(3) 1(3) 2= (1 I)2=I ) 2=1( (2) aCUIelXemle
2 5 1(5) 2=-1-(2)-+- (3) 3= 1 1-2(2) 4=3 11 1e(2)
3 7 2 =1(3)-+ 1(4) 3 I (I-( -2(3)  5 =3 (1) 2 2)

2= I( )+ () 
)3 2 3)5 =23 2)

4 9 2=1(4 +1(5) 4= 1 1) 1 (2 + 2(3) 6=3 1 +3(2)5 13 43=2 3 ( +1 " 5 ()-' 4 = 1 (I 2 -l-3) 7"/ a (1) +I 4 2 1 -} 2)

13 14 = I'1 1( ) 6 = " +(3) 20 +103(3) 10=7 I 3(2
7 15' 4=2 3 14+ 6=I(+12+()I7I+)

17 4 = 1 4)+2(5) 7 1 1 (i 2)4(1) I=1 +4I )

*See page 93 concerning icosahedral symmetry in ionic crystals.

l) Splitting in a field of; 2) icosahedral symmetry; 3) cubic symmetry;
4 trigonal symmetry; 5) tetragonal symmetry; 6) rhombic symmetry; 7)
total splitting; 8) degree of degeneracy of the level of the free atom.

TABLE 3.2

iCiene. 2 Pacienaeune p.omj - "IP O W A O K H.
7,amM CI00JI* *KlOcal, pwueceo* 'IHe~Ct
M" TOa CNUUOTPIIE CHNNOTPON UDO

1/2 2 1=1 (2) 112
3/2 4 2=1 (4) 42)
5/2 .. 6 = 1(6) 2=1 (2) (4) 3(2)
7/2 8 2=1(2)$1(6) 3=2(2)+1(4) 4 29/2 10 2= 1 (4) I 3 (2) +2(4) 52
11/2 12 3 1 + 2)I 4)+1 6 4=22)+2(4) 6(2)
13/2 14 4=2(2)+ (4)+1 5=32 72)
15/2 16 3 1 (4)+2(6) 5-2 2__ 8_)

1) Degree of degeneracy of the level of the free
atom; 2) splitting in a field of; 3) icosahedral
symmetry; 4) cubic symmetry; 5) lower symmetry.

by other authors [6], but only after experimental material on paramag-

netic resonance in ionic crystals was accumulated did it become pos-

sible to construct a consistent theory of energy spectra of paramag-

netic ions.

53.2. Matrix Elements of the Crystalline Field

To calculate the effect of the crystalline field on the energy

C levels of paramagnetic ions by the perturbation method it is necessary

first to calculate the energy matrix elements H of the electrons of

- 59 -

Ww ii.A ,



the unfilled shell in the electric field of the crystal. The energy

HNr can be represented in the form

'"Y, (3.1)

where V is the potential of the crystalline field and xi, yi, zi are

the coordinates of the i-th electron of the unfilled shell. Assuming

that the electron shells of the paramagnetic atoms and of the par-

ticles surrounding it do not overlap and that cor.zequently the poten-

tial V satisfies the Laplace equation, we can expand the potential in

a series of spherical functions:

V=) A,- .'(0. q (3.2)

This expression can be greatly simplified and only a few terms of the

series retained. Only the d and f shells of the paramagnetic atoms can

be unfilled in ionic crystals. In calculating the perturbation matrix

.kr with the aid of the d-electron wave functions, the spherical func-

tions with n > 4 give matrix elements equal to zero [7]. Precisely in

the same way, the terms of the series (3.2) with n > 6 can be left out

in the case of f electrons. It is also necessary to discard the terms

of the series with odd n, for the matrix elements of odd-order spheri-

cal functions vanish by virtue of the invariance of the electron wave

functions under the inversion transformation; account is taken here of

the fact that all the crystals investigated to date have a symmetry

center. The term with n = 0 yields an inessential additive constant,

which can be set equal to zero. Finally, the fact that V is real leads

to Am = (A-m)*. Equation (3.2) can be further simplified by taking

into account the symmetry of the crystalline field. We notice that the

surface spherical function Ymn(a,9) has axial symmetry if m = 0, tet-On

ragonal symmetry if m = +4, trigonal symmetry if m = +3, hexagonal sym-
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metry if m = +6, and finally rhombic symmetry if m = +2. It follows

therefore that if we denote A0rn n(O,,) by Un and [AYm(0,q) +

+ AnmY-m(0,q) by UIm i, then the potentials of the fields of differentn n n
symmetries will have the form:

V,,,P=U1+U +1+U±+'W (tetragonal) (3.3a)
V,p.,=U& +UUI-.U1-U (trigonal), (3.3b)

Vrgez +Mu+WU V W (hexagonal), (3.3c)
V, .- =- - aj-j-, - (rhombic), (3.3d)

24
V, ,,="Y,- + U.-+ U (triclinic). (3.3e)

M-O M-0 a,-

For a field of cubic symmetry, if the polar axis (the Z axis) coin-

cides with the fourfold symmetry axis, the potential assumes the form

V., =Ar' {0'0, ) + Y/F I Y (#. ,)+ Y .(0. T} +

+ AA ((g. T)- Y7J (0, + ,, (3.4a)

On the other hand, if the polar axis is parallel to the volume diag-

onal of the cube and is therefore a threefold symmetry axis, we have

V,,=Dr'{1(, ,) +j1: Y1 (0, T') + Y4' (0, )} +

+ D.0{YJ (.,)+ y jff[Y(0. )+ YV(, ,),+

+ Y8n (6.0, + Y (0,0)]} (3.4b)

The tetragonal field is the sum of an actual field and a cubic field,

given by an expression such as (3.4a); in precisely the same manner,

a trigonal field can be decomposed into a sum of an actual field and a

cubic field given by expression (3.4b).

To continue the calculations it is more convenient to change to

Cartesian coordinates. If we denote by Vm the following homogeneousn
polynomials of degree n in the coordinates x, Z, and z:

6
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I-;_3z'-r', VJ--xz, V|--X1--y',

t,, .35z' - 30rz' -+ 3r, V4 = (7z0 - 3r4) xz,

t'- r') (x' -y'), V=(x' - 3y)xz,
v =x,-6x'y'+y', VJ=231z'-315r'z'+05tr'z'-5, (3.5)

tj:=33x;' - 30xzr - + 5t.xz,

v- 16z (x'-y')- 16 ('-y') z'+ x, + x'y' -y.x' -,
1'-=(I lz' - 3r')(x' - 3y')xz V=(1 lz'-r')(xi-x'y+y),

V: fX'z- 1OX'Yz+5XY', V*X- 15x'y'+ xy' -,

then we have LnM= Bn' where

6--- AL BJ='1 AI,- B=1 I Al

B!.' Al, B aP' I Al i, I5t AILi=~-J/IA B-[f~A2,x B=JbA (3.6)

-2 , -A -a, B J -. J J
/ ---- IA7 BI 1 13" 21 •-

The potential of the cubic field (3.4a) has in Cartesian coordinates

the form

+ CO [2 (x+y6 - z)- 15 (x'y' +('x'3+
. + z'x' + X'z' + z'y' +y'z' + 18ox'ff4 (3.7)

where C&= " A--20B, C.-=--/- 3A=84

Now that we have derived analytical expressions for the potential

of the crystalline field, let us discuss several general premises con-

cerning the calculation of perturbation matrix elements. Let *M(M =

= J, J- 1, J- 2, ..., -J) be the wave functions of the ground state

of the free atom under the assumption that the only electron interac-

tions considered are those much larger than Hkr. The quantum numbers J

and M denote the angular momentum and its projection on the Z axis,

respectively, which are conserved in this case. It is easy to show

S that the matrix elements
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vanish if M y m + M'. In accordance with (3.1), the symbol Z denotes

summation over all the electrons of the unfilled shell.

To find the nonvanishing matrix elements that relate states hav-

ing the same J, it is customary to use the method of equivalent opera-

tors [8], [9]. The totality of the functions Yn(m = 0, +1, +2, ... , +n)n
forms the basis for the irreducible representation of a rotation group

of dimensionality 2n + 1. Each electron coordinate function Zin can ben

set in correspondence with an equivalent operator, that is, with an

analogous function of the angular momentum projection operators 3x, J

3, which have the same transformation properties. Thus, corresponding

to the functions X(x2 - y2 ) and Z(3z2 - r2) are the operators 2 - Jy

and 33.2- J(J + 1). We note that the determination of the equivalent

operators is not complicated by the fact that unlike x, Z, and z, the

operators Jx' Jy' and Jz do not commute. Therefore to determine the

operator equivalent to the expression xky--zm it becomes necessary to

take the arithmetic mean of (k + 1 + m),!/l.'m, possible operator per-
44 e It e

mutations ... J J ... J J . For example, the function Zxy corres-

ponds to the operator 1/2(JxJy + J yJx).

The matrix elements of the functions Zv'n and of the corresponding
n

equivalent operators coincide, apart from a certain common factor,

which is the same for all functions with the same n.

Thus, the cumbersome direct calculations of the matrix elements

of the crystalline field potential can be replaced by simple calcula-

tions of matrix elements of polynomials of the second, fourth, and

sixth degree in 3x, 3, and Iz . Direct calculations are nevertheless

necessary to determine the common factors a, 0, and y, but for this

purpose it is sufficient to calculate only one matrix element Zvn forn
| each electron configuration and for only one potential function with

specified n.
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TABLE 3.3

FV [3AJ J,. I(J +J)+(4 +_)),

+(.1++++J-) J(+I)a +J

2,r4

- 2 I(J + J'l;

C,-1 135P- 3oJ(s+ I)5.,' +25+-73 (.J+ 1) + 3(J+ )' (

-1 T j -7J( - ( .-+- 1) -](J,+ +J-)-+

+ (J+ +J-) 17.- 3(+ 1), +

SF j+ [7J,'-J (J+ )- 51(4 +.t-)++ J (J+ J+-51;

4i F" I J,( M + 11) + (A+ j!) J.}

+{ 294J.' -5P/ (1+. 1) r + 40,P (J + I)- - 6W (,/-+ 1));

f-PI 76 [IAa-SoJ (J + 1).P,+ 15j" + SP(s + I)* J,-101 V + 1) 1. +

+ +,I L+) +(J+ + )-3o0(J+ J,+ 15J,' +
+5P+( + I)$ , -Io)((J++ 1)3J, + ZJ

PI-- P 113 4a 18-- V ~+ 1)J' - 12 + P,(J + I)',+ IoJ(J+ 1)+ 102] X

+ IOJ(J+ 1)+ 102 ):
-; i[.,.- (+ )J,-50,](Jf+,+(+, x

X [IIA-3JV(+ ,))a-,iJ);

- (A, + j!) + 04 + h), J.

rite )44+dJ,. JL"4aUr

1) Where.

Table 3.3 lists the linearly independent equivalent operators of

the polynomials 1n of second, fourth, and sixth degree. The sign ofn
the sum in the expressions for ZVm has been left out everywhere, and rn
stands for the distance between the electron and the nucleus.

gThe calculation of the matrix elements relating states with dif-
ferent J calls for a separate analysis, for in this case the method of
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equivalent operators becomes much more complicated. The results of

some calculations are given in §3.6.

In calculating the matrix elements of the functions v'n it is use-n
ful to bear in mind that

<J + k, J.- M I V.I141 ( ,)' <J+' I, V.0 .1. _,-45. (3.8)

§3.3. Iron Group Element Compounds

It is well known from investigations of the static magnetic sus-

ceptibility [10] that the effect of the crystalline field is usually

much stronger in these substances than the spin-orbit coupling, but is

weaker than the forces that determine the principal term of the ion.

Consequently the Hamiltonian for the paramagnetic ion of the iron

group is best written in the following form:

Q*= * + + &., + J + Q'r. (3.9)
Here go is the principal part of the Hamiltonian, which includes all

the free-atom interactions that are independent of the spin variables.

The remaining terms of the Hamiltonian can be regarded as a perturba-

tion, namely

is the spin-orbit interaction operator,

VSS P + I(a)-I (L + I)S(S+ ,)]

is the spin-spin interaction operator [11], and

erz~p(L+ 2k )H.

is the energy of the electrons in the external magnetic field (the Zee-

man energy). The splittings caused by the perturbation forces are of

the order of:
"V, P0104'lc, Nlo 10'c', .ca Vr.3 S c.-', "z, I cx-'.

If only the principal Hamiltonian H0 is considered, then the total

S orbital momentum L and the spin momentum S will obviously be conserved
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quantities. We shall assume that the problem of the possible eigen-

states of go has been solved by the self-consistent field method. In

calculations by the perturbation method we shall start from the ground

state go0, characterized by a definite electron configuration and by

definite values of L and S. The higher-order approximations, which

take into account the influence of the excited terms of A0 will in

most cases be unnecessary. Table 3.4 lists the configurations and

terms of the ground states of different ions of the iron-group ele-

ments.

The calculation of the effect of the perturbations can be broken

up into several stages. A comparison of the magnitudes of the per-

turbing forces shows that it is possible to calculate first the split-

ting of the 2L + 1-fold orbital level under the influence of the crys-

talline field H , setting the remaining interaction aside for the

time being.

Since we are dealing with d electrons, expressions (3.3) and (3.4)

for the potentials of the crystalline field can be simplified, leaving

out the terms Urn with n = 6. The matrix elements of the potential func-n
tions Vm can be calculated with the aid of the equivalent operators of

Table 3.3. It remains to determine the coefficients a and p. For this

purpose it is sufficient to calculate one matrix element of some poten-

tial function Vmn with n = 2 and one with n = 4. We choose the func-
0n

tions Vo and because they have only diagonal matrix elements. For2 V
what follows it is necessary to express any one of the wave functions

of the principal term of the paramagnetic atom in terms of the one-

electron d functions. This is simplest to do by taking a state with

maximum projections of the spin and orbital momenta (2 I 0 ..1 , which

. obviously will be characterized by a symmetrical spin function and an

antisymmetrical linear combination of the one-electron d functions:
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TABLE 3.4

13 1Hog Koli~ry. Ouoeuoa o
H paus j Top: 1. CE-I

TI0+  d ID. 154 2 2

104 2 2

V*+ dI IF 55 2- 2l
d0 2 2

Cr' d' 'P 87 2 2

CrI+  d' &D 257 2 2
2 2

Mn'+ d' 'O 85 2 2

MnI+ dt es _
Fee ds  IS - - -

Pe' d' &D -100 2 2
2T 0

2 2
CO*+  dy IF -10 T- I - FI-
Me+ dl 2 2

Cut+ d9 'D -852 T --2

l) Ion; 2) configuration; 3) prin-

cipal term; 4) X,"cm-I.

fm= R(r)Y-(O,q) with m = 2, 1, ... Thus, we choose from among the

2L + 1 different coordinate functions *M' corresponding to the ground

state ft0, the function with the maximum magnetic quantum number M. It

is easy to verify that if there are less than five d electrons, then

I .t V,* mdt $f V.0f,dA + Sf efdc+. . (3.10)

The number of the integrals in the right half of the equation is equal

to the number of d electrons. If their number exceeds five, the calcu-

lation is made for the number of electrons lacking to fill the d shell,

and the result is taken with the opposite sign. The values of a and

calculated in this manner are listed in Table 3.4.

In most of the salts investigated the crystalline field can be

resolved into two components: a strong field of cubic symmetry and a
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Fig. 3.1. Splitting of the
principal orbital levels of
the ions of the iron group in
a cubic field.

weak field of lower symmetry, for example trigonal or tetragonal. Thus,

the energy kr is represented by the sum &r = K + 1. The cubic field

K is produced frequently by the six water molecules located at the ver-

tices of the octahedron whose center is occupied by the paramagnetic

ion. This field changes little on going from one element in the iron

group to another or even from one salt to another. The apparent reason

for this is that the dimensions of the octahedron are determined by

the diameter of the paramagnetic atom.

The field T has a dual natilre: first, it is produced by all the

ions of the crystal and has the symmetry of the latter, and second it

is due to the deformation of the octahedron resulting from the Jahn-

Teller effect. According to the well known theorem of Jahn and Teller

[12], the stable state of a nonlinear system of atoms is the one hav-

ing the least possible degree of degeneracy.

It is necessary to solve first the question of the effect of the

cubic field. We see from Table 3.4 that only S, D, and F terms are en-

countered for the free ions of the iron-group elements. The ions in

- 68 -



the S state will be considered separately. On the other hand, the

qualitative picture of the splitting of the D and F terms can be ob-

tained directly from group-theoretical considerations (Table 3.1). The

F term splits in a cubic-symetry field into one singlet and two trip-

lets (Fig. 3.lc and d), while the D term splits into a doublet and a

triplet (Fig. 3.la and b). Calculation by the perturbation method

yields the following values of the energies and the corresponding

functions [9], calculated for the following two cases:

1) Quantization axis 2) Quantization axis
coincides with the coincides with the
trigonal axis of tetragonal axis of
the cube the cube

L=2 { ,

3 I
3/-1 01 +/+- -t)'

II
+,0

2 _+if
Y22

A =547r'c

The modulus A denotes total splitting in the cubic field.

Gorter [15] considered the ordering of the energy levels produced

under the influence of the field of the water-molecule octahedron, in
S other words, the question of the sign of C4. It turned out that 0L4 > O.
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It follows therefore that if the ion contains only one d electron,

then the lower orbital level will be a triplet and the upper a doublet.

The electron configuration d6 differs from d by an addition of five

electrons. Since the term corresponding to the configuration d5 is 6S,

which is affected by the action of the cubic field only if the higher

approximations are taken into account, the same pattern of splitting

of the orbital level will occur for both cases, d1 and d6 (Fig. 3.la).

The configuration d9 can be regarded as a filled shell with one hole

or with one positive electron. A similar correspondence will exist be-

tween the configurations d6 and d . Consequently the level sequence in

the case of d9 and d4 will be reversed (Fig. 3.1b).

For the configurations forming the F terms, it is easy to con-

clude that in the case of d3 and d8 the lower orbital level will be a

singlet (Fig. 3.1d); on the other hand, the configurations d7 and d2

correspond to an inverse sequence of levels, and consequently the

lower level is a triplet.

Gorter has also shown that in tetrahedral complexes C4 < 0 for

the cubic component of the field. Consequently, the sequence of the

sublevels will be the inverse of that indicated for ions with octahed-

ral surroundings.

We now proceed to consider the remaining perturbations, which can

be written, in accord with (3.9), in the form

TV +, L-(L + 1) (S+

+, + 2i),. (3.12)

The experiments are usually made at such temperatures that one

can regard as populated those energy levels whose distances from the

ground level do not exceed a few hundred cm- 1 . We can therefore be

L interested only in the lowest orbital level occurring in a cubic field.

It is very important to know whether this level is simple or degenerate.
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Let us assume that the lower level is simple. If we take into

consideration the electron spin, then (2S + 1)-fold degeneracy appears.

The field T, which does not act on the electron spin, can produce only

an inessential level shift. In a singlet orbital state, the average

momentum L is zero, and consequently the spin-orbit interaction HLS

also vanishes in the first approximation. Consequently, it is neces-

sary to take the second approximation into consideration, and this

yields for the orbital level splitting values of approximately X2/&

M 1 cm-1 , that is, of the same order of magnitude as the Zeeman energy

and the spin-spin interaction.

A method for calculating the splittings of the ground state of a

magnetic ion was developed in [16, 17] and has found extensive use in

experimental investigations of paramagnetic resonance; it is known as

the spin-Hamiltonian method. It consists of the following. We go

through the usual perturbation theory procedure in two stages. We

first calculate the matrix elements H' with the aid of the coordinate

wave functions, this being possible by virtue of the fact that the un-

perturbed Hamiltonian is independent of the spin variables. As a re-

sult the perturbation energy turns out to be a function of the spin

operator S; we shall call this function the spin Hamiltonian.

It is easy to show that the spin Hamiltonian has the form

(3.13)

where the tensors Dij and glJ are determined from the formulas

Dj -- 'A, - pij; g 1 = 2 (8jj-AjjAr jj= f 01 L I n) (nlI Lj 10); "(3 14)
II (Ia,+jiI).3.+1Sj

2m 0 < + , +

Here i, J = x, y, z, and E0 and En denote the energies of the ground

Sand excited orbital levels, respectively.
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If kr has tetragonal or trigonal symmetry, then the tensors Dij

4KW and gij are characterized by two principal values, corresponding to

two directions: parallel and perpendicular to the symmetry axis. Tak-

ing the symmetry axis to be the Z axis, we have

= -o S+)]+- + +

+ Pe±(I1,A + II.S). (3.15)

Deviations from tetragonal symmetry can be taken into account by add-

ing the term E( 2 - ) and replacing gj by the coefficientsg x and g.

The part of the spin Hamiltonian proportional to D (and to E) deter-

mines the splitting of the orbital level in the absence of an external

magnetic field. The terms proportional to HOx, HOy, and Hoz indicate

that the magnetic moment of the atom in the crystal is anisotropic;

deviations of the E factor from the value g = 2 denote that a small

fraction of the momentum connected with the orbital motion is added to

the spin momentum of the electrons.

The spin-Hamiltonian method makes it poscible to describe the

spectrum of paramagnetic resonance by means of a small number of con-

stants: D, E, gU, g. e.. The determination of these constants from

the form of the spectrum constitutes the main task of the experiments

in paramagnetic resonance. The theoretical problem is to determine

these constants on the basis of a definite model of the crystal.

The theory developed here applies primarily to ions whose lower

orbital level in a cubic field is a singlet. These include the ions

Cr3 + , V2+, and Ni2+ . The ions Cr2 +, Mn3 + , and Cu2 + should also be in-

eluded in this group, if the field T has a tetragonal symmetry. In the

case of these ions L = 2 and the lower level resulting from the action

of the cubic field is an orbital doublet, on which, in accord with

(3.11), the spin-orbit coupling HLS has no influence whatever, while

a tetragonal field does split it. Thus, the lower orbital level will

- 72 -



again be simple, and its spin degeneracy will as before be (2S + l)-

fold.

Let us consider a more general case, when the degeneracy of the

lower orbital level in a cubic field makes the matrix elements of the

spin-orbit coupling HLS different from zero even in the first approxi-

mation. Now the perturbations caused by the spin-orbit coupling HLs

and by the field T are of the same order of magnitude and should be

considered simultaneously. Because of the Jahn-Teller effect, the

paramagnetic ion should have minimum degeneracy following the action

of these forces. If we apply in addition the Kramers theorem, then we

arrive at the following important conclusions: HLS and the lower-

symmetry field T cause complete splitting of the energy levels of para-

magnetic ions with an even number of electrons. Now not only the or-

bital but also the spin levels will be simple. As a rule, the inter-

vals between these levels exceed 1 cm-1 , and consequently paramagnetic

resonance can be observed only with the aid of radio frequency fields

in the millimeter band.

If the paramagnetic ion has an odd number of electrons, then the

Kramers double degeneracy is retained. In this case the splitting of

the energy level in an external magnetic field can be calculated by

introducing an effective spin with value 1/2. The spin Hamiltonian

will have the following simple form:

~e=PexfeA+,yH.,&+g~~ (3* 16)

where S'i are the Pauli matrices. We shall not stop to discuss the con-

nection between the coefficients gx' ' and zwith and with the

constants of the crystalline field.

Many investigations have been devoted to a detailed theoretical

S analysis of the paramagnetic resonance spectra of salts of cobalt (18,

19], nickel (20-22], and copper (23-25]. In particular, many theoretical
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investigations have been devoted to chrome alums [26-34), which are

extensively used in adiabatic demagnetization.

In order to determine the form of the paramagnetic resonance spec-

trum, it is necessary to know not only the system of the lower energy

levels of the paramagnetic ions, but also the probabilities of the

magnetic dipole transitions between these levels. The probability of

transition between any two levels M and M' is proportional to the

square of the nondiagonal matrix element of the projection of the mag-

netic moment of the electrons on the direction of the alternating mag-

netic field IM HI M'>1
2 . These matrix elements are particularly easy

to calculate if the spin Hamiltonian has been established. If the posi-

tion of the alternating magnetic field intensity vector is defined in

terms of direction cosines a,, a2, and a3, then we can write for the

operator of the component of the magnetic moment:

+ aag' +(3.17)

It remains to calculate the matrix elements Ax' y' and Az with

the aid of the spin wave eigenfunctions of the levels M and M'.

§3.4. Paramagnetic Resonance Spectrum of Nickel Ion in an Axial Crys-
talline Field

We shall examine the general methods used to calculate the para-

magnetic spectrum resonance using by way of an example the Ni2+ ion in

a tetrahedral or trigonal field of a crystal. These calculations per-

tain, in particular, to the well investigated nickel fluorosilicates,

in which the crystalline field has a tetrahedral symmetry. The lower

orbital level of Ni2+ is a singlet (Fig. 3.1d), and the spectrum can

therefore be calculated with the aid of the spin Hamiltonian (3.15),

provided that the tetragonal axis is directed along the Z axis.

The nonvanishing matrix elements of the vector T can be calcu-

£ lated from the well known formulas (7):
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• ISj~) (3.18)(MIS, I M) =M.j

In our case S 1 1, and the nonvanishing elements of I assume the

following values

( - I S . 0 ) = ( ' S " I _7 f

-,IS, l0)(0ISI1)= ; (3.19)

- IS, -- 1)-I; (ISl J
We assume first that the static magnetic field H0 is parallel to

the tetragonal axis of the crystal. Then the possible values of the

spin-level energies Ei and the corresponding spin wave functions i

are determined from the equation

A.. = (D J + g.$.) ' = EH. (3. 20)

It is convenient to use the value of D as the energy unit. We there-

fore introduce the notation

E, _glIPH . L P.6 ---- Y' - - --= --' X --= D (3.21)
A

We denote by nM the eigenfunction Sz, corresponding to the eigenvalue

M. Since we are using a representation in which the matrix Sz is di-

agonal, the matrix (3.20) is obviously also diagonal and consequently

the eigenvalues of A and the corresponding eigenfunctions are
.sp

S.=0, 1 , S-l-X 11, 1ab-- = 1 , se=X11"+ I, 'r (3.22)

With the aid of (3.22), (3.19), and (3.17) we can readily ascer-

tain that the magnetic dipole transitions between the spin levels are

possible only under the influence of the alternating magnetic field

component perpendicular to the Z axis. According to (3.19) two absorp-

tion lines of equal intensity ( g2 2 ) should occur, corresponding to

the transitions 1 -. 0 and 0 -- 1.

Let us assume now that the magnetic field H0 is perpendicular to

the crystal axis. If we assume the field H0 to be parallel to the X

axis, then the spin Hamiltonian assumes the form
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&0= DM + g.LPH*§r (3.23)

With the aid of (3.18) we obtain the following secular equation for

the determination of the spin energy levels:

~-. L 0

- X-L . (3.24)

Y-

The solution of this equation yields the following eigenvalues and

eigenfunctions:

X. +

"=' -)(3.25)

- +4 -,

The matrix elements of the components of the vector ', calculated with

the aid of the spin functions (3.25) are

(alS, l=(b--lS.c=O, (jSlc)=-,

A-T- 21- (3.26)
(a IS, lc)=o.

(= IS, (a I S -l C " =0."
(alS, lO=O.

It is seen from these formulas that in strong magnetic fields, when

xI >> 1, paramagnetic resonance occurs only if the alternating field

is perpendicular to the field H0 . In weak and intermediate magnetic

fields, the matrix element is <alSxlc> 4 0 and consequently resonant

paramagnetic absorption is possible between the levels a and c, pro-

vided the static and alternating magnetic fields are parallel to each

other. A scheme of the energy levels and of the possible transitions

is shown in Fig. 3.2.
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Fig. 3.2. Dependence of the spin energy levels

of the Ni2+ ion in fluorosilicate on the in-
tensity of the magnetic field HO. a) H0 paral-

lel to the tetragonal axis of the crystal; b)
H0 perpendicular to the tetragonal axis.

§S3.5. Hyperfine Structure of Paramagnetic Resonance Spectra

The theory of the hyperfine structure of atomic spectra was de-

veloped long ago. The novelty in its application to paramagnetic reso-

nance spectra of crystals lies in the need for taking into account the

effect of the crystalline field and a few other effects which are of

no significance in optical research. The first calculations of the hy-

perfine structure of paramagnetic resonance spectra, pertaining to

copper salts, namely Tutton's salt [35] and the fluorosilicate [36],

have disclosed a clear-cut disagreement with the experimental data.

The differences between theory and experiment became particularly

sharp when, in spite of the theoretical predictions, a hyperfine struc-

ture was experimentally established for the paramagnetic absorption

lines in the salts of Mn2 +.

All these contradictions were eliminated with the aid of the "a-

configuration interaction" hypothesis (37]. It is well known [38] that

the magnetic interaction of the s electrons with the nucleus is much
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stronger than that of the electrons with 1 y 0. It was assumed that

the ground state of the paramagnetic ion contains besides the usually

assumed configuration 3dn also a small admixture of confIgurations

containing an unpaired s electron. It is most probable that the hyper-

fine structure is due to the admixture of the configuration 3sp6 dn4s

because, first, the transition of the 3s electron to the 4s orbit

calls for a small expenditure of energy; second, in this configuration

the total orbital and spin angular momenta can assume the same quantum

values L and S, resulting from Hund's rule for the ground state of the

ion. The s configuration interaction takes place in free atoms and de-

pends little on the crystalline field.

A confirmation of the hypothesis of s configuration interaction

can therefore be the isotropy of the hyperfine structure of the para-

magnetic resonance spectrum and the fact that the hyperfine splitting

constant is approximately the same for all the investigated salts of

Mn2 + . It must be noted that the s configuration effect is particularly

important for salts of the iron-group elements, for in these crystals

the orbital magnetism is suppressed (the orbital levels are singlets),

which greatly reduces the hyperfine splitting.

The general theory of the hyperfine structure of paramagnetic

resonance spectra of iron-group element compounds has been developed

in (17). If the paramagnetic atom has a nuclear spin different from

zero, then the following expression is added to the Hamiltonian (3.9)

W) ( L(L~) + 1'()'-k 1)-I ()(

(U)))~p (III+)1 ,L r+ (3-27)

where

2
gNPON _____ (2t+ 1) -43
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if I is the nuclear spin, gNON is the magnetic moment, and _q is the

quadrupole moment of the nucleus; Tj has a plus or minus sign depending

on whether the first or second half of the d shell of the atom is

filled. The first term in (3.27) takes into account the interaction

between the electrons and the magnetic moment of the nucleus, while

the second represents the interaction with the quadrupole nuclear mo-

ment and the third the energy of the nucleus in the external magnetic

field. The coefficient k is introduced to allow for the influence of

the s-configuration interaction. A theoretical calculation of k is ex-

tremely complicated. On the other hand, comparison with the experimen-

tal data has disclosed the interesting fact that the coefficient k is

practically the same for all ions of the iron group.

The transition from (3.27) to the spin Hamiltonian can be carried

out by the method described in §3.3. We know that it is necessary to

distinguish between two cases, depending on whether the atom is in a

simple or degenerate state after the action of the cubic field of the

crystals. In the former case the spin Hamiltonian, with account of the

interaction between the moments of the nucleus and the electron shell

and with the external magnetic field has the form

=AAJJ + PVJ , ii NNHJ. (3.28)

If the resultant crystalline field has trigonal or tetragonal symmetry,

then

a + Pf V+1)) (3.29)

In the second case, the spin Hamiltonian will have the same form but

now stands for the effective spin A'. We shall not dwell here on the

connection of the coefficients A and B with the constants of the crys-

talline field and the nuclear moments, but it is obvious that the con-

L stants of the magnetic hyperfine structure A and B are proportional to

gN(l/r3), and the quadrupole interaction constant P is proportional to
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q(I/r3 ). The intensity of the individual hyperfine components of the

paramagnetic resonance spectrum will be determined as before only by

the magnitude of the matrix element of the electron magnetic moment

(3.17), since the nuclear magnetic moment is very small. Consequently,

in the simplest cases when the component of the nuclear angular mo-

mentum 3z is conserved, a selection rule Am = 0 exists for the magnetic

quantum number.

Most theoretical calculations and experimental researches pertain

to strong magnetic fields, the action of which on the unpaired elec-

trons of the paramagnetic atoms exceeds greatly the interactions be-

tween the latter and the moments of the nucleus. Calculations of hy-

perfine splitting in weak magnetic fields are more complicated and

have been made only for a few particular cases [39].

In order to verify the hypothesis of the s-configuration interac-

tion, an analysis was made in [37] of the experimental data on the op-

tical spectra of neutral atoms and paramagnetic resonance spectra of

the ions of the 3d-transition group elements. This analysis confirmed

a premise already stated by Fermi [38] that if there are no s elec-

trons in the ground state of the atom, then an appreciable portion of

the hyperfine splitting is frequently determined by the unpaired s

electrons of the excited levels. A quantitative estimate of the coef-

ficient k was also made [401 with the aid of the Hartres-Fok functions

and yielded a value approximately ten times smaller than that observed.

The discrepancy between the theory and experiment can be attributed to

the fact that the Hartres-Fok method is not suitable for the calcula-

tion of the wave functions near the nucleus.

§3.6. Parameters of the Crystalline Field. The Jahn-Teller Effect

Up to now all the calculations of the energy spectra of the para-

magnetic ions in crystals were carried out by the "crystalline field"
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method. The parameters of the crystalline field Am were determined

here as a rule by comparing the theoretical results with the experi-

mental data on paramagnetic resonance, on the temperature dependence

of the static paramagnetic susceptibility, on the optical absorption

spectra, etc. It would be interesting to make a the6retical estimate

of the magnitude of the crystalline field and primarily its principal

cubic component. Van Vleck [13] and Polder [6] made a numerical calcu-

lation under the assumption that the cubic field is made by six point-

like charges eeff or by six dipoles each with moment Ite' located at

the vertices of an octahedron at a distance R from the center. It fol-

lows from this model that the parameter C4, which was introduced in

(3.7), has a value

-- -- T ~i=¢ ' or 75ejT (3 .30 )

An x-ray structural analysis of alums [41] has shown that R = 2.0 A.

To calculate the splitting A we must also know the value of r for the

3d electrons. If we use the 3d hydrogen functions, we obtain

r =126a Z-' = 4,10a', r-- 25,515aZ-'==31,2a. (3.31)

We have assumed here Z = 5.35, which follows from the experimental

value of 43 ev for the ionization potential of Ti3+. If we assume

eeff -e or Pe 2-10-8 CGSE, then the calculated intervals between

energy levels in the cubic field are in good agreement with the ex-

perimental data. This agreement must nevertheless be regarded as for-

tuitous, since the model assumed is very crude. Kleiner [42] made more

precise calculations for chrome alums, taking into consideration the

distribution of the electron cloud in the oxygen ion. The water mole-

cules have their oxygen atoms, which can be regarded as 0- ions, facing

the center of the octahedron. The results of the calculations were in

S complete contradiction to the experimental data, for even the sign of
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the parameter C4 was foundto be incorrect. Tanabe and Sugano [43] took

account of the covalent bonds between the central ion and the surround-

ing atoms (see §3.8). Exchange effects cause an inversion of the energy

levels and their sequence becomes correct. The absolute value of C4

turns out here to be about 3/2 times larger than the experimental value.

We have already indicated that only in the first approximation

does the crystalline field surrounding a paramagnetic particle have a

cubic symmetry in the case of the salts of the iron-group elements.

Actually, however, appreciable deviations exist. Superimposed on the

strong cubic field is a weak field of lower symmetry, the origin of

which is connected with the following three different causes [26].

1. Direct action exerted on the paramagnetic particle by the elec-

tric field of the remote particles situated outside the octahedral com-

plex. In alums, for example, this field has a trigonal symmetry and

can be represented in the following form:

VT,., = (0 t 30o:r2) (xy +.Yz + zx) - 35H (xy, - xy.+
+yz + yzS + zX + z'x) + C. (3.32)

Here x, Z, and z are the Cartesian coordinates of the electron and per-

tain to the principal cubic axes; G and H are constants independent of

r; C is a polynomial with cubic symmetry and therefore immaterial for

our purposes. If we introduce the spherical coordinates Ri, ai, and P.,

which define the position of the charge ei relative to the paramagnetic

center, then we obtain the following expressions for the constants G

and H:
O -- e, eR,-2 (I cos2 a, -- )

2 2
- eRi- 35cos'a.30cos'c±3+ (3.33)

+ 7V2"cos a, sin* aj cos 3Pj.

Calculations shows that for titanium alums, for example, the splitting

of the lower energy level by the field (3.32) is equal to about 350 cm ".
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2. Indirect action of the remote particles. The remote particles

cause the octahedral complex to become deformed and distort its cubic

field. If we have three pointlike charges a, ], and c, then the direct

action of charge a on charge c is stronger than the indirect action

due to the motion of charge b under the influence of charge a. In our

case, however, the indirect action can exceed the direct action, since

the electron clouds of the particles forming the paramagnetic octa-

hedral complex overlap one another. One proof of the significance of

the indirect action is the well known fact that the initial splittings

of the spin level of iron alums increase when they are magnetically

diluted by substituting aluminum ions for the iron ions. In this case

the direct effect cannot change appreciably, since the iron and alu-

minum ions have the same charge, and the radii of these ions are very

small compared with the distances between trivalent atoms. On the

other hand, the deformation of the octahedron can be greatly influenced

by whether the ion at its center is iron or aluminum.

3. The Jahn-Teller effect. This cause of lattice deformation,

which leads to a lowering of the symmetry of the crystalline field, is

frequently very important. The Jahn-Teller theorem was initially

proved for molecules [12] and then extended to include crystals [13,

14]. According to this theorem, the geometrical configuration of nuclei

cannot be stable if the electron state of the molecule is degenerate,

except in the two following cases: a) the molecule is linear, that is,

the nuclei lie on one line; b) the molecule contains an odd number of

electrons, and the degeneracy of its electron state is a double Kramers

degeneracy, that is, one that cannot be lifted by any change in the

electrostatic forces.

The lowering of the symmetry of nuclear configuration, if we ex-

clude the two indicated cases, will lift the degeneracy of the elec-
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tron state. It can be proved that the mean energy of different electron

states remains constant after the splitting of the energy level. Thus,

at least one electron level will lie below the initial one after the

deformation of the molecule.

Van Vleck [131 made the transition from the molecule to the crys-

tal by considering the behavior of an octahedral paramagnetic complex
A

in an external trigonal field. The Hamiltonian H of the electron state

contains as parameters the distances between the centers of the par-

ticles (atoms or molecules) forming the complex. An arbitrary displace-

ment of these particles can be described with the aid of 21 normal

vibrational coordinates Qi. Expanding the Hamiltonian in powers of

we get

G+ VTP~r (3.34)

A

Here H0 contains all the interactions that are possible inside the

regular octahedral complex and are independent of the electron spin of

the paramagnetic ion; trig takes into account the effect of the re-

mote atoms of the crystal lattice. Let W0 be one of the eigenvalues of

k, Connected with the energy W0 is one of the set of wave functions

given in (3.11). By considering the second and third terms of (3.34)

as a perturbation, we can set up and solve a secular equation, the so-

lution of which will give in first approximation the correction to the

energy W0 . The energy of the entire system is thus a certain function

of the displacements Q. By solving the system of equations
aw

0O--- l l, ,.) (3.35)

we can find such displacements 0 as correspond to a minimum energy W,

and consequently, to the most stable configuration of the paramagnetic

complex. Van Vleck made detailed calculations for titanium, vanadium,
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0
and chrome (excited state) alums. The K were found to be of the order

of l0-9 cm. The potential of the low-symmetry crystalline field re-

sulting from the distortion of the octahedral configuration of the

water molecules will be a quadratic function of Q0. The splittings

the orbital levels due to this field have been calculated to be on the

order of 102 cm-1 . The potential energy of the f electrons of rare-

earth atoms in the crystalline field is approximately 100 times smaller

than the energy of the d electrons of the iron-group atoms. Conse-

quently Q0 = 10-11 cm in rare-earth crystals, and consequently the

level splitting due to the Jahn-Teller effect can have an approximate

value 102. (10"2)2 = 10-2 cm-1 . As will be shown below, experiment con-

firms this conclusion.

The Van Vleck theory was further developed by Pryce and his co-

workers [14]. From general considerations, they reached the conclusion

that the Jahn-Teller effect pertains not only to degenerate but also

to almost-degenerate systems. An interesting example of such almost-

degenerate systems are linear triatomic molecules of the type BAB.

In addition, they investigated in detail octahedral complexes

which, let us note, are encountered not only in paramagnetic salts,

but also in crystals containing F centers, luminescent centers, exciton

states, etc. The degeneracy of the electron state of an octahedral

paramagnetic complex can be triple or double. If the degeneracy of the

energy level is triple, then the deformation of the complex on going

to stable nuclear configurations will follow in some cases the (100)

axis, and in others the (111) axis. As a result, the complex has either

a tetragonal or trigonal symmetry. If the degeneracy is double, the

situation is more complicated. The point is that in this case the en-

S ergy splitting due to the deformation of the complex is proportional

to 2 + if we denote by Q2 and certain normal vibrational coor-
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dinates of an octahedron of even type. It is convenient to introduce

new variables p and a:

Q,=psin Qs=pcos-. (3.36)

It is clear that the splitting is independent of a. Thus, there exists

an infinite set of configurations corresponding to one and the same

value of the energy. If we take anharmonic effects into account, then

we find that the most stable configuration is obtained by stretching

the octahedron along one of the tetragonal axes.

All these results, as indicated by Abragam and Pryce [36] can ex-

plain why copper salts, the crystals of which have trigonal symmetry,

have an isotropic g factor and an isotropic and small hyperfine struc-

ture constant. In a field of cubic symmetry, the lower orbital level

of the copper ion is doubly degenerate and the wave functions belong-

ing to it are, in accord with (3.11), 91 = *0 and P2= (1/ 2)(*2 + *-2).

Neither spin-orbit interaction nor a field of trigonal symmetry

can lift the degeneracy. The only reason for the splitting of the

given orbital level is the Jahn-Teller effect. The following wave

functions will belong to the energy sublevels:
f, = 7, ;oS a + (P, sin, cis , = 2, l -, cs COS (3.37)

The principal values of the S tensor, calculated with the aid of these

functions, are
-2-- .2 - (cos a - sin a)",
2+ 2-(cos, +y,j), (3.38)

C-2-81 C' I
If we average over a, we obtaingx=y = = 2- 4(%/A). We can ex-

plain in similar fashion the isotropy of the hyperfine structure of

the paramagnetic resonance spectrum.
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§3.7. Salts of Rare-Earth Elements

It is well known that the room-temperature static magnetic sus-

ceptibility of rare earth salts can be calculated by assuming that the

carriers of the paramagnetism are the three rare earth ions in states

determined by Hund's rule [101. This hypothesis is also confirmed by

optical data [44]. We can therefore conclude, first, that deviations

from the normal (Russel-Saunders) coupling are small, at least in the

ground states, and second, that the action of the crystal field on the

paramagnetic ion is weak and not capable of disturbing the spin-orbit

coupling. The latter is explained by the following two singularities

of rare earth ions.

1. The magnetic properties of the rare earth ions are due to the

low-lying 4f-electrons, the mean distance of which to the nucleus is

much smaller than that of the 3d electrons. In addition, the external

electron shell has a screening effect. The crystalline field therefore

causes in the rare earth elements level splittings on the order of 100

cm'1 , i.e., about 100 times smaller than in ions of the iron group.

2. Multiple splitting is much larger in rare earth ions than in

iron-group ions; it has an order of 103-104 cm-1.

The spin orbit coupling thus turns out to have a much stronger

influence than the crystalline field, and therefore the Hamiltonian

for the paramagnetic ion must be written in the form

== ° ,- (3.39)

Here H is the Hamiltonian of the free ion. In the perturbation-method

calculations we shall start from the ground state at H , in which the

conserved quantities can be taken to be the total angular momentum J

and the orbital and spin momenta L and S. Sometimes higher approxima-r tions, which take into account the influence of the excited levels of

H0 , are of importance; it is usually sufficient to consider the first
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excited multiplet level. The intervals between the ground and first-

excited levels are known for many elements from optical and magnetic

measurements. For the remaining elements, the multiplet-structure

constant can be estimated, in accordance with (45], from the following

formula:
X = 200 (Z- 55)c.-'. (3.40)

Table 3.5 lists the ground state of the rare earth ions, and also

the data on the first excited energy levels, known from experiment and

obtained with the aid of (3.40).

Let us proceed to examine the splittings of the (2J + 1)-fold
A

level of a free ion in a crystalline field Hk. Unlike the hydrated

salts of the iron group elements, in which the paramagnetic ion is usu-

ally surrounded by an octahedron of water molecules which produces a

strong electric field of cubic symmetry, in most salts of rare earth

elements the paramagnetic ion surrounding produces a field of trigonal

symmetry [47]. The energy levels of ions containing an odd number of

electrons therefore splits into J + 1/2 doublets (Table 3.2); on the

other hand, if the number of electrons is odd, singlets and doublets

are obtained (Table 3.1).

For a quantitative calculation it is first necessary to find an

expression for the potential of the crystalline field.* In the case of

a C3v symmetry (formates) the potential is given by formula (3.3b), in

which all six coefficients Am differ from zero. For the somewhat higher

symmetry C3h (ethyl sulfates, bromates), we have A3 = A3 - 0. The mat-

rix elements Hr necessary for the calculations in the first perturba-

tion-theory approximation can be obtained with the aid of the equiva-

lent operators (Table 3.3); the common factors a, P, and y for all

* rare earth ions can be determined with the aid of the * functions cor-

responding to the states with maximum Jz, by changing over from the
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TABLE 3.5
Energy Levels of Free Rare Earth Ions

D~iue r 2 coo BHowe €0T01-. -'i ~L-1
SA IOemouo 100 COCTOS1 to )j.cei

(XI+) COCTOSINO I

Ce 58 1' 'F.,, 'F,,/, '2 100 2 240 146J
Pr 59 P. H 'H, 2000 -
Nd -60 f- /*, 1/,/, 1800 -

Pm 61 f'61, %1, 1500 -
Sm 62 P *H,1/, Wl,/ 980 I 100 131
Eu 63 .f IF, ?FI 270 300, 340 [3, 471

Gd 64 f' SS, 1 .

Tb 65 fl T. IF. 2000 - [461

Dy 66 /' -H.1, *HI.,, 3300 -

HO 67 1i"'. '1, 4800 5050 [481
Er 68 'Ii./,, %%./ 6500 8000 1481
Tm 69 p 'H, 'IH, 8400 8250 [491
Yb 70 Ps Fi 'F,%. 10500 10300 1481

I) Element; 2) ground state; 3) excited

state; 4) theoretical; 5) cm-1; 6) ex-
perimental; 7) reference.

J, Jz representation to the Lz, Sz representation and then to the lz, s z

representation [8].
A

To calculate the splittings due to H in the second approxima-

tion we must know the matrix elements of .kr" relating the ground and

first-excited states:

(+1, ,-mJV'IJ. JY.

For this purpose, the following formulas were described in (45, 51]:

,J I, J.I 1V IJ, s,) = '-es, yu+ I 's

,J+ 1,4 V I., J ) = P'r'J- (7J,' - 31, -- V.+ 2) V(j + '-L-,
(J+ 1,J, VI , )M A -r', 33J(-5J(J' + 12J+ 15) + 5J'++20P - 511'-5oj+ 12]V(/+ j),- .

(J+ ,.-+ 31 V,J, J)-. -Pr-Xt4j + - J 5)'+ +4
(J+i,/ J -+3jV j''= - 287 T[2's: - (V-.8) - J, (4J,+

V '(i + .V )' _15,,.+I,:,+4JV, ,1/++J'2== )(+ (R-1- Wiv

C. The coefficients a, 1, y and a', 0', 'y' are listed in Table 3.6.
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The values of a, 0, and y can also be calculated with the aid of the

Racah coefficients [52].

After solving the secular equation and thus determining the energy

levels of the ion in the crystalline field and the corresponding wave

functions, it is necessary to proceed to calculate the splittings of

these levels by the external magnetic field. We know that Hr gives

rise either to doublets (ions with odd number of electrons) or to

doublets with singlets (ions with even number of electrons). Since the

intervals between the energy levels in the crystalline field are some-

what larger than the Zeeman splittings in ordinary magnetic fields, we

shall consider the action of the magnetic field on each level sepa-

rately. Since the spin-lattice interaction in salts of rare earth ele-

ments is very strong at room temperature (see §5.3), the experiments

must be carried out at temperatures that are so low that only the low-

est level is populated in practice.* It is clear that paramagnetic

resonance can be observed if this level is not a singlet. The wave

functions of the lower doublet are used to calculate the perturbation

matrix elements HZ = PH0 ( + 29) by means of the following formulas:
(1,... .IL+2SJ,.. >=g,(J...I)jJ...), (3.41)

where go is the Lande effect for the free ion and

< J+ lJ, I t.+ 2S, 1J, J. )== g'V(J+ 1i)'-J, 
( J+ 1, J, J- II + 2§,,1 J J, = < ( J+ ' " J -1-(3.42)

S ' +n2$§,) IJ JJ) == :p 'V(J-±'J,+1)(J±J,+2),

where

,=(J+I+S+2)(--'+.+S)(J-I+s+ (.t+ L- S+I) Y4 (3.43)

The values of go and g' for individual ions are listed in Table 3.6.

TAle perturbation matrix of second rank has a trace equal to zero

and can be represented in the form POg ', where -' is the Pauli mat-

- 90 -



N IV

u5 7

a~~C -'a

-7 0 7_7_7_7___

0 C1 S D

01

cn ;0

E-4

~- r- c 9-



rix vector and g is a certain tensor with principal values gU, gl, gi.

If the wave functions of our doublet, which we symbolically denote by

1+> and 1->, are so chosen as to make the matrix Lz + 
2Sz diagonal,

then
g),--21<+I t.+2'l )J'.= 2!+It.+2 1,-) 1. (3.44)

Thus, the paramagnetic resonance spectrum can be interpreted with

the aid of a spin Hamiltonian with effective spin S' = 1/2:
P- P9. , + Pg1 (Ho.. + Ho ;). (3.45)

Ions with an even number of electrons call for a special analysis.

In this case it is easy to show that the nondiagonal matrix element is

<+14 + 2Sx1-> = 0. It follows therefore that there should be no para-

magnetic resonance effect. Indeed, if the field H0 is parallel to the

trigonal axis of the crystal, then the magnetic dipole transitions be-

tween magnetic sublevels will be forbidden, but if H0 is perpendicular

to the trigonal axis then gL = 0.

This effect was nevertheless observed in experiment, for example,

in praseodymium salts. An explanation of this effect was found with

the aid of the Jahn-Teller theorem [12]: in crystals containing ions

having an even number of electrons the symmetry of the electric field

is lowered to such an extent that the degeneracy is completely lifted

and the doublets are split. These splittings, assumed by Van Vleck (131

are very small in the case of rare-earth ions and do not prevent the

observation of paramagnetic resonances under usual magnetic field in-

tensities. The paramagnetic resonance spectrum of ions with an even

number of electrons can be calculated with the aid of the spin Hamil-

tonian

(3.46)
where A = x is the doublet splitting due to the Jahn-Teller ef-
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fect in the absence of the magnetic field H0.

Many papers have been devoted to a detailed theoretical analysis

of paramagnetic resonance spectra of individual rare earth elements:

cerium ethyl sulfate [53, 50), the ethyl sulfates of Nd, Sm, Dy, Er,

and Yb [54, 55], to the double nitrates of Ce, Pr, Nd, and Sm [56].

Attempts to interpret the observed paramagnetic resonance spectrum in

dysprosium double nitrate have led to an interesting result. It turned

out that the crystalline field can be divided into two parts [57]: a

strong field of very high symmetry, namely icosahedral, and a weak

trigonal field. For the field of icosahedral symmetry

A 3--" L4 A,8, A:=14A., (3.47)

and all the remaining Am vanish. To calculate the level splitting inn
fields of high symmetry it is convenient to use the method proposed in

[58].

A large number of field constants An (up to six) makes difficult

a unique interpretation of the observed paramagnetic resonance spectra.

It is therefore customary to make use also of optical data, of results

obtained by investigating the dependence of the static magnetic suscep-

tibility on the temperature, or of information on the Faraday effect.

To be sure, some difficulties arise from the fact that paramagnetic

resonance is observed in strongly dilute solid solutions of paramag-

netic salts, whereas other experiments are made with concentrated para-

magnetic crystals. Dilution changes the electric crystalline field ap-

preciably; in cerium ethyl sulfate these changes cause even the inver-

sion of the two lower neighboring energy levels.

Reference (45] deals also with the general theory of the hyper-

fine structure of paramagnetic resonance spectra of rare earth ions.

Calculation of the hyperfine splitting of the electron energy levels
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can be made with the aid of the spin Hamiltonian (3.29) with effective

spin S' = 1/2. If we denote here the operator of magnetic electron-

nucleon interaction by (*/I)NI, then the hyperfine structure constant

will be equal to
A=2i!( +P,1+>, B==2 (+IP.,I-). (3.48)

The nonvanishing matrix elements of the operator N can be calculated

with the aid of the following formulas

(A ,... 1'NI J, ... ) - N( J.... 1 IJ..,[ (3.49)

(J---, J. 11 , I J, J, )= N'V(J- I)Y-J: I

The coefficients N and N' are listed in Table 3.6.

Rare earth ions can be artificially introduced into crystals

which produce a field of cubic symmetry around these ions. The split-

ting of the energy levels in a field of cubic symmetry was considered

theoretically in [59], where only part of the potential, proportional

to r , was considered. Bleaney [88] has shown that splitting in a

cubic field can be calculated with the aid of a special type of spin

Hamiltonian.

We wish to note in conclusion that many papers [4, 6], which in

their day have played a major role in the explanation of the magnetic

properties of rare earth salts, have lost their importance because of

incorrect assumptions made concerning the symmetry of the crystalline

field.

§3.8. Ions in the S State

Paramagnetic ions which have electron configurations 3d and 4f7

are in states
6S5, (Mn' , Fe'+) and ,S/ 2(Gd4 , Eul+, Cn,+).

The resultant orbital moment of the electrons is zero, and the electric

j crystalline field should therefore not split the ground levels of these

ions. Actually, a small splitting has been ascertained both in experi-
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ments on adiabatic demagnetization and from observations of paramag-

netic resonance.

The complexity of the processes that bring about the splitting of

the energy levels of ions in the S state makes it difficult to attempt

direct calculations. It is therefore customary to use the spin Hamil-

tonian method. In the absence. of an external magnetic field, the spin

Hamiltonian will be an even polynomial of fourth degree (for Mn2+ and

Fe3 + ) or of sixth degree (for Gd3+ , Eu2 + , Cm3+ ) in the projections of

the spin momenta Sx, .S z The number of terms of this Hamiltonian

is greatly reduced if we take into consideration the symmetry of the

crystalline field. Thus, for example, for the Mn2+ or Fe3 + ion we can

write the spin Hamiltonian in the form

12 (3.50)

Here the first term takes into account the effect of the trigonal or

tetragonal field with symmetry axes directed along the Z axis; the

second term is connected with the small deviations toward the lower

symmetries; the third term specifies the action of the cubic-symmetry

field, and S1 , S2. and S3 are the spin components referred to the

cubic axes; the last term takes into account the effect of the external

magnetic field. The S factor of ions in the S state is isotropic. De-

tailed calculations of the positions and intensities of paramagnetic

resonance absorption lines were made in [31, 60] for ions with S = 5/2

and S = 7/2 under the assumption that the crystalline field has a

cubic symmetry. Both strong and weak magnetic fields were considered

there.

Let us dwell briefly on different mechanisms capable of splitting

the ground levels of ions in the S state under the influence of the

crystalline field. The origin of the third term in spin Hamiltonian
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(3.50) was explained by Van Vleck and Penney [61], who showed that if

the effect of a cubic-symmetry electric field and of the spin-orbit

interaction are taken into consideration simultaneously, then the

ground level of an ion with configuration d5 is split in the fifth-

order approximation. The constant a can be estimated from the formula

4(3.51)

Here K stands for the matrix element of the potential of the crystal-

line cubic field <3dIVkbl3d>, calculated with the aid of the single-

electron functions; Eps is the energy interval between the 4P and 6S
terms of the free ion. Putting K = 104 cm- 1 , X = 300 cm 1 , and E =

2.5.10 cm- 1 , we get a ; 10 -l cm . It is kmown from experiment that

the constant a is approximately one order of magnitude larger for Fe3 +

than for Mn + . The reason for it is that the ratio X/EPS is somewhat

larger for Fe3 + than for Mn2+; furthermore, the quantity K is obviously

larger for a trivalent ion than for a divalent one.

The origin of the first (and second) term of the spin Hamiltonian

can be explained in two ways. Abragam and Pryce [17] called attention

to the following splitting mechanism. The magnetic dipole interaction

of the electron spins inside a paramagnetic atom depends not only on

their relative orientation, but also on the electron coordinates. If

the electron probability cloud has a cubic or spherical symmetry, then

the averaged energy of the spin-spin interaction is independent of the

orientations of the spins relative to one another; consequently the

ground state of the paramagnetic ion is fully spin-degenerate. A field

of tetragonal or trigonal symmetry slightly deforms the electron clouds

and makes it ellipsoidal in shape. In this case the spin-spin interac-

tion averaged over the electron cloud will depend on the relative ori-

entations of the spins. The splitting of the energy ground level of a
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paramagnetic ion occurs already in the second approximation and it

will be proportional to F- 35/12. The constant D can be estimated

from the formula

U()
ED$• (3.52)

Here U = <3dIU0I4s>, and EDS is the interval between the 3d4 4s6 D and

3d 5 6S terms. According to Watanabe [62] a term of the type Dg2 arises

in fourth-order perturbation-method calculations, if simultaneous ac-

count is taken of the spin-orbit interaction and the effect of cubic

and axial symmetry fields. An estimate of the splitting can be made

with the aid of the formula

o% 'K(. (3.53)

where U d = dI U0l3d>. Both formulas (3.52) and (3.53) yield IDI 0.1

cm-1 if we assume U = U' = 103 cm l, EDS = 2.5.10 cm , andr =

= 5a 3 this is in good agreement with the experimental data.

Analogous splitting mechanisms were considered in other papers

[62] devoted to calculations of the principal terms of ions in the S

state.

If the paramagnetic resonance spectra of ions in the S state dis-

play a hyperfine structure, this structure can be calculated by adding

to (3.50) the spin Hamiltonian (3.29). The presence of a hyperfine

structure in electron energy levels of ions in the S state is appa-

rently due exclusively to the configuration interaction.

§3.9. Covalent Bonds; 3d, 4d. and 5d Transition Groups

Ionic crystals, the paramagnetism of which is due to elements of

the 3d, 4d, and 5d transition groups, frequently contain octahedral

complexes MX6 : the center of such a complex is occupied by an atom M

with unfilled d shell, and the vertices of the octahedron are either
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water molecules, CN radicals, or atoms of chlorine, fluorine, etc. The

bond inside the MX6 complex is frequently covalent, something first

pointed out by Pauling [63], who attempted to explain the singularities

of magnetic properties of potassium ferrocyanide with the aid of the

theory of localized pairs. Van Vleck [64] showed, however, that the

experimental facts pertaining to static magnetic susceptibility can be

equally well explained by assuming covalent forces within the complex

Fe(CN)6 or by advancing the hypothesis that the interaction is purely

ionic, but that a strong crystalline field disturbs the normal type of

bond between the electrons of the iron atom.

If the molecular orbital method is compared with the localized

pair method, it turns out that the results obtained by the former

method are more general and closer to the experimental facts. Detailed

calculations of the energy splittings in a strong crystalline field

were made for an atom with configuration d5 [65]. Van Vleck's theory

was later extended to include cyanides of other elements with electron

configurations from d1 to d4 [66). A further impetus in the develop-

ment of the theory of the covalent bond inside the MX6 complex was

produced by the discovery of the unusual hyperfine structure of the

paramagnetic resonance spectrum of iridium [67]. It turned out that

the absorption line of the iridium contained in (IrCl 6 ] has a struc-

ture due to the magnetic moment of the chlorine nucleus, and this fact

points clearly to the covalent character of the bond within the com-

plex. A detailed analysis shows that the hyperfine structure of the

spectrum of Ir cannot be attributed to the a bond, which was already

investigated by Van Vleck, so that it becomes necessary to assume that

the 7r bond between the iridium and the chlorine also plays a notice-

able role. A general analysis of the theory of paramagnetic resonance

in MX6 complexes with covalent a and 7r bonds was made by Stevens [68].
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Data were soon compiled on the absorption of light by hydrated

salts of the iron-group elementL as well as experimental results on

paramagnetic resonance in these substances [69].

Contradictions arose, and these could be eliminated by assuming

that the bond in the octahedral complex is partially covalent. Double

covalent bonds were established in the vanadium complex of vanadium

sulfate [70] by comparing the paramagnetic resonance data with results

of observation of optical absorption spectra and x-ray structural

analysis. Further generalization of the theory became necessary to ex-

plain the spectra of paramagnetic resonance of chelates [71] and

fluorites of the iron-group elements [72]; to set up the molecular or-

bitals for fluorides it was necessary to involve not only the 2s and

2p functions of the fluorine but also states with principal quantum

number n = 3. We note also that to explain the hyperfine structure of

Mn2+ ions introduced into the ZnF2 crystal it becomes necessary to

take the covalent bonds into account [891.

We shall present a general analysis of the effect of covalent

bonds on paramagnetic resonance spectra of the elements of d transi-

tion groups by following Stevens [68] and Owen [69] and using the

method of molecular orbitals.

a) Energy levels and molecular orbitals of a complex

If the bond were purely ionic in nature, the atom would be a posi-

tive ion with unfilled nd shell (n = 3, 4, 5), inside of which the

electrons are distributed over the following orbitals*: d 3z2_r2,

dx2-y2' dxy' $ z' dzx" The subscripts indicate the angular dependence

of the real d wave functions. If we disregard the interaction between

the electrons, then the ground level of the atom M splits in a crystal

field of cubic symmetry in accordance with (3.11) into a lower triplet

and an upper doublet. The first two of the listed orbitals belong to
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the doublet and are called after Bethe [l], the dry-orbitals. The func-

tions dxy, dyz , and dzx belonging to the triplet are called de-orbitals.

In the ion approximation the particle X is diamagnetic and is a

negative ion with a 2 shell that is filled as a rule; examples are X =

= C1-1 or 0-2.* The orbital functions of the atoms M and X6 must be

used to set up the molecular orbitals of the entire octahedral complex.

We first consider the covalent a bond, which is formed by the or-

bitals of the central atom ndy, (n + 1)s, (n + 1)p and the p. orbitals

of the surrounding atoms, which overlap the former appreciably. We in-

clude among the p0 orbitals also the s functions of the X atoms. Alto-

gether, we can construct 6[2(dy) + l(s) + 3(P)] binding six disinteg-

rating orbitals, four of which contain magnetic dy orbits [64]:

' .:- -,; ----- -2p-,±_-,--- lp 2---- -p 5---- (3.54)(354)
X /G - -,+P -+P-a -P- s ,

o~~t,,= V*I ',I d3, ,.,t+ .-I -_y I2o [ ,,'+p, d- p - ,,p pj,(3 5

0..-.. r!,-,,., .,-_ + , , -- ,+ -oXo
X[2P 6-2I)±P+Pj-P4Pj.,

=q J / I lt _ __ I'

We denote here the binding orbits by a, the disintegrating orbits by

c*, and use the subscripts 1, 2, 3, 4, 5, and 6 for the X atoms located

on the axes X, Y, Z, -X, -Y, -Z, respectively. The coefficient a shows

to what extent the * functions of the central atom and of the environ-

ment are mixed. If a 1, the bond is purely ionic; on the other hand,

if a 2 = 1 - a2 = 0.5, the electrons are shared by M and X6 with equal

probability.

The covalent 7r bond can be formed by mixing the de orbitals of

the central atom with the p orbitals of X6 . This bond should generally

speaking be weaker, since the directions of the combining orbitals are

such that they overlap little. The molecular orbitals have the follow-
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ing form (68, 69]:

d - [p, + p, -- p4 (3.56)

+ P ' p, + p, -.o, - Pei.. (-7

The other four combinations Iyz, r*yz, 7zx' *zx are obtained from

(3.56) and (3.57) by cyclic permutation of the indices. The coeffi-

cient 0 shows how large the 7r bond is; when p = 1 there is no 7r bond.

In expressions (3.54)-(3.57) we have neglected the influence of the

overlap of the atomic orbitals of M and X and the normalizations of

the a and 7r functions.

Figure 3.3 shows a possible level scheme for the free atoms M and

and for the complex MX6. We see that the a bond increases the split-

ting A due to the cubic field of the crystal, while the 7r bond de-

creases it somewhat. This scheme applies to the cases X = C1-1 and H20;

on the other hand if X = CN-, then the formation of the 7r bond with M

occurs with the aid of the orbitals of the excited level of the carbon

atom, which lies above the de level. Because of this, the sign of P

should be reversed in (3.56) and (3.57), so that the binding orbitals

become disintegrating orbitals and vice versa. Now the ?r bond also

leads to an increase in 6.

To develop the theory further, as already mentioned in §3.1, it

is important to compare the action of the cubic field with the inter-

action between electrons, leading to the formation of the term. In hy-

drated salts of the iron group elements the value of A is much smaller

than the interval between the different terms of the free paramagnetic

ions; in cyanide and in a few other salts of the element of the same

group, the inverse relation holds true in the compounds of the ele-

ments of the 4d and 5d transition groups. The apparent reason for the

latter is that in heavy elements, first, the Russel-Saunders coupling
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Fig. 3.3. Scheme showing the transition from
the orbital energy levels of a paramagneticatom M and of diamagnetic atoms X6 to the

energy levels of the complex MX6 . The figures

in the parentheses indicate the degrees of
orbital degeneracy of the levels. 1) Unfilled
(disintegrating orbitals) ; 2) magnetic par-tially filled orb tals (disintegratLng)* 3)

filled orbitals (binding and nonbinding).

is weak and, second, the d orbits lie farther away from the nucleus

and therefore overlap more strongly the orbits of the X6 atoms.
b) Hydrated salts of the iron group elements

The procedure for calculating the spectrum of the paramagnetic

resonance is the same as in §3.3, but only the perturbation matrix ele-

ments (3.12) need now be calculated with allowance for the presence of

the covalent bonds. For this purpose, it is necessary to expand the

wave function of the entire unfilled electron shell in terms of d

functions of the individual electrons, and the latter must then be re-

placed by the orbitals (3.54)-(3.57). Owen [69], who took only a bonds

into account, has shown that systematic discrepancies between the op-

tical and magnetic data on the intervals A can be eliminated by choos-

ing suitable values of the coefficient a. Thus, for example, for Ni2+
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we have in accord with the previously developed purely ionic theory

g = 2.0023 - 8%/A; on the other hand, if we take the covalent a bonds

into account, we obtain

gz--2023-' (3.58)

This result can be interpreted in the following fashion: each of the

two unpaired electrons has a probability a2 of being in the nickel

atom and a probability 1/6(1 - a2 ) of being in each water molecule. As

a result the spin-orbit coupling is reduced and in place of X we have

' =a 2X. For the complex [Ni(H 2 0)6 ]
2  the experimental values of A

and X, taken from optical observations, as well as the values of A ob-

tained by measuring paramagnetic resonance, lead in accord with (3.58)

to a value a = 0.83. The covalent bonds should also decrease the hyper-

fine splitting, something indeed observed in copper salts [25].

(de)J "

__.1__ ----------;

Fig. 3.4. Level splitting
scheme of the ground state of
the octahedral complex under
the influence of the spin-
orbit interaction (LS), the
tetragonal field (T), and the
magnetic field (M). It is as-
sumed that the constant of the
tetragonal field is 6 > 0; if
6 < 0, then the lower state
for the configuration (de)l
will be a doublet. The dashed
lines indicate the splitting
occurring only in the second
perturbation theory approximation.
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exception of (de)3 have triple orbital degeneracy. Therefore, owing to

the Jahn-Teller effect, the octahedral symmetry should be lowered.

We shall assume that a weak field of lower symmetry, such as tet-

ragonal, is superimposed on the cubic field. We denote the total

splitting due to this field by 6. If we furthermore take the spin-

orbit interaction into account, we obtain the following series of

values for the energy Ek*:

(da)l T7, E 1=E2=- a j
T (3.59)

1. 2 2 __'\+'&

(de)"r.: E.3 =Eu, = I [_-4-

3 " 2 (3.60)

The energy levels (de)5 2T2 are obtained from (de)1 and (de) 43T are

obtained from (de)2 by reversing the signs of 6 and X. The splitting

of the level (de)3 occurs only if the higher approximations of per-

turbation theory are included. In the case of an odd number of elec-

trons we have Kramers' doublet, and theref'ore paramagnetic resonance

can always be observed. If the number of electrons is odd, observation

of paramagnetic resonance is possible (the ground states are singlets);

an exception is the configuration (de)2 if 6 < 0. Calculation of

doublet splitting in a magnetic field shows that the g factor de-

creases, owing to the covalent bond. Thus, for [IrCl 6 ]2- we have, for

example,

g=2
- (3.61)

We have already indicated that covalent bonds produce a hyperfine

structure in paramagnetic resonance lines, due not only to the momen-

tum of the M nucleus, but also the momenta of the X6 nuclei. Calcula-
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tion of the hyperfine structure can be made with the aid of the spin

Hamiltonian (3.20), containing an additional series of terms that take

into account the spins of the X6 nuclei. Thus, if a strong magnetic

field is applied along the Z axis and only the octahedral symmetry of

the crystalline field is taken into account, then the spin Hamiltonian

has the form

,,. = g 11 P oSHO,-FA (S',)o -- A' {(+ 'zI:) 3 4 (S',), (3.62)

where A' =-(32/15)P2(l _ 2 )goo01(0- 3 ). The subscript 0 pertains

here to the central atom and the subscripts 3 and 6 to the X atoms lo-

cated on the Z axis.

In conclusion we must note that the spin-orbit interaction can be

described with the aid of a single constant X only in the case of octa-

hedral symmetry. Deviations of the field symmetry from octahedral

cause anisotropy of the spin-orbit interaction.

§3.10. The Actinides

It is firmly established by now that the transition group of ele-

ments starting with thorium contains a partially filled 5f shell [44].

The actinides differ from the 4f transition rare-earth group in their

tendency to form compounds that contain complexes which are rather

stable chemically, similar to the uranyl ion (U02 )2+. A systematic in-

vestigation of the magnetic properties of the actinides, and particu-

larly paramagnetic resonance, began only recently, and so far only

compounds containing U02 , Np02 , and PuO2 have been well investigated.

The experimental data on these complexes have been theoretically in-

terpreted in [74-76].

Let us start with an examination of the complex U02 , although it

does not have normal paramagnetism and therefore does not give rise to

paramagnetic resonance.

The structure of this complex is linear: O-U-0. The free uranium
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atom has a closed core and six valence electrons, forming a configura-

tion 5f3 6d7s 2 . Two of these electrons are lost in (U02 )2+, and the

four remaining ones produce a strong covalent bond with the oxygen

atoms. In the simplest model used in (74, 751, only the a bond is as-

sumed. The linear combinations of the 5fo, 6da, and 78 functions form

orbitals which are highly elongated in the direction of the oxygen

atoms, and strongly overlap the spG orbitals of oxygen. Thus, no un-

paired electrons remain in the ground state of (U02 )
2+, and conse-

quently compounds containing uranyl will either be diamagnetic or will

have a weak temperature-independent paramagnetism.

The ions (NpO2 )
2 +, (Pu02) 2+ and (Am02) 2 + have a structure and

chemical properties similar to those of (UO2 )
2 +. It is natural to as-

sume that the character of the bond of all these ions is the same, and

that the additional electrons fill the 5f shell, similar to the 4f

electrons of the trivalent ions Ce, Pr, and Nd. However, the trans-

uranyl compounds differ greatly from the solid salts of the lantha-

nides in that the magnetic properties of the former are more sensitive

to the crystalline field, whereas for the 5f electrons of the actinides

the dominating effect is produced by the axially symmetrical field due

to the binding electrons of the complex. In first approximation, the

magnetic properties of a compound containing a transuranyl complex

will be the same as those of a linear molecule; the crystalline field

introduces small corrections.

The complex (NpO 2 )
2+ contains one unpaired f electron, which

moves in a strong field of axial symmetry. Therefore the conserving

quantities will in first approximation be the components of its total

(3z), orbital (_z) and spin (Sz) angular momenta about the symmetry

axis, which we choose to be the Z axis. In an axial field, all pos-

sible values 11i = 3, 2, 1, 0 will correspond to different energy
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levels. The very lowest level, which is located about 104 cm" away

from the neighboring one, corresponds to a state with Ilz2 = 3, for in

this case the charge of the unpaired electron is located in the equa-

torial plane, so that the repulsion between it and the electrons form-

ing the a bond will be minimal. This quadruply degenerate level (1z =

= +3, s z  +1/2) is split as a result of the spin-orbit interaction

into two doublets: Jz = +5/2, +7/2. The first doublet lies 3000-4000

cm - 1 below the second, and consequently it is the only one responsible

for the paramagnetism of neptunyl.

The paramagnetic resonance spectrum can be calculated with the

aid of the following simple spin Hamiltonian

*=guPH, s,+-F (H,, s4-H S) + A!, ,+
+ B - + P - I(1,+ 1)] ,,, (3.63)

Here g,1 = 2<+Il z + 2^z +>, g1 = 2<+j 4 + 2*x->, t+> and -> denote

the wave functions of the lower doublet, while S' is the effective

spin with value 1/2. In the approximation that takes only the a bond

into account we have g= 4, gL = 0. If the possibility of the n bond

is also taken into account then, as we have seen in the preceding sec-

tion, the orbital momentum drops and 1 is replaced by k1z; k <-Z

< 1. Now gL p 0, gl = 6k - 2. Comparison with the experimental data

shows that k = 0.9.

Finally, it should be noted that the large electric field gradient

produced by the electrons forming the covalent bond will give rise to

a large hyperfine structure, due to the quadrupole moment of the Np

nucleus.

The complex (Pu0 2 )2 + contains two unpaired electrons, the motion

of which is perturbed primarily by the axial field and by the electro-

static repulsion between them. For the same reason as in the case of

neptunyl, it might appear that the unpaired electrons should occupy
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the state lz = ±3. Actually, however, because of the electrostatic re-

pulsion between the electrons, the ground state of the "configuration"

5ff2 is determined by the modified Hund rule: the electron spin projec-

tion should be maximal, Sz = 1; the projection of the orbital momentum

should have a maximum value compatible with Sz = 1, namely: IllzI = 3,

I12zl = 2 and, consequently, Lz = +5. The spin-orbit interaction

causes further splitting of the energy levels, after which the lower

level turns into a doublet with Jz = ±(5 - 1) = +4.

Elementary calculation shows that if we again introduce an effec-

tive spin S' = 1/2, then for this doublet gl = 6, gL = 0. The proba-

bility of transition between magnetic sublevels is in this case equal

to zero independently of the direction of the external magnetic field

H. A detailed analysis shows that an account of different corrections

does not change the fact that g, = 0. As a result, the paramagnetic

resonance has a maximum when the alternating magnetic field is parallel

to the Z axis. The reason for it is that the previously unaccounted for

crystalline field of lower symmetry causes an intermixing of the wave

functions with Jz = +4. It must be kept in mind that the doublet con-

sidered here is not a Kramers' doublet, for the number of unbound elec-

trons is even in our case. Thus, the spin Hamiltonian will have the

form

&==gVW, +A§J+P~r'_ 3(3.64)

The last two terms take into account the splitting due to a low-sym-

metry crystalline field.

S3.11. Influence of Exchange and Dipole Interactions on the Form of
the Paramagnetic Resonance Spectrum

Interesting exchange effects were observed in certain salts of

' copper. The temperature dependence of the static magnetic susceptibil-

ity of copper acetate is unusual (77]. Sharp anomalies in the magnetic
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behavior of this substance were also observed by the paramagnetic reso-

nance method [78). All these singularities can be explained as follows.

The crystalline cell of copper acetate has two closely adjacent para-

magnetic ions, which behave, as the result of the strong exchange bonds

between them, in a manner similar to a single "molecule," capable of

being either in a paramagnetic state with spin S = 1, or in a diamag-

netic state with spin S = 0. It is well known [10] that the exchange

bond is characterized in the absence of other forces acting on the

spins by a cosinusoidal dependence on the spin direction; the exchange
A

energy is equal to -JSIS 2, where J stands for the exchange integral

and S1 and S2 are the spins of the interacting atoms. It has been

shown at the same time that if there are other than exchange forces,

which also strongly influence the spin directions, then the cosinus-

oidal law may still be valid, but only for the "effective" spins [21,

221. In copper acetate the exchange interactions are much stronger

than the spin-orbit coupling (which appears only in the second approx-

imation), and therefore the Hamiltonian for the system of two copper

ions under consideration will have the form

de =k,+ - j&+ €,,+ ZA ) +

+ Pno(L,i + 29,+ L2+ ). (3.65)

The subscripts 1 and 2 are the numbers of the copper ions in the crys-

tal cell, while the remaining terms of the Hamiltonian stand for the

energy in the crystalline field, the exchange interaction, the spin-

orbit coupling, and the energy in the external magnetic field. The ex-

change interactions split the lower orbital level of the "molecule"

into a spin singlet and a triplet. It is possible to explain with the

aid of (3.65) in natural fashion all the known facts concerning the

static magnetic properties of copper acetate, the paramagnetic reso-

nance spectrum, and its hyperfine structure.
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The exchange interactions influence the form of the paramagnetic

resonance spectrum also in copper sulfates [79], but here the anomalies

have a different character, since the exchange energy is comparable in

order of magnitude with the radio frequency quantum; its value is ap-

proximately 0.15 cm-1 , whereas in copper acetate J = 300 cm-1 .

The magnetic dipole interactions usually are causes of broadening

of resonance lines. In some cases, however, when the substance is mag-

netically dilute and contains at the same time magnetic particles that

lie closely to each other, these interactions can bring about the ap-

pearance of a fine structure of the paramagnetic absorption spectrum.

Such a structure was observed in neodymium ethyl sulfate [80]. If the

static magnetic field is parallel to the hexagonal axis of the crystal,

then the spectrum comprises a symmetrical triplet with intervals of

360 oerstedsbetween the extreme absorption peaks. The central peak has

approximately double the intensity of the extreme ones. Simple calcu-

lation of the energy of dipole interaction between the ion and the

neighboring particles yields values +2g11(/c
3,O,0; here c = 7A is the

distance between two closest particles, located along the hexagonal

axis. Thus, the satellites may be located 50g11 = 180 oerstedsaway from

the central peak. A more complicated spectrum structure was established

for gadolinium ethyl sulfate, this being due to the larger spin of the

Gd3 + ion.

§3.12. Forbidden Spectral Lines. Multiple Quantum Transitions

So far, when speaking of a paramagnetic resonance spectrum, we

had in mind resonance lines pertaining to such spin levels, the transi-

tion probabilities between which differ from zero in the first per-

turbation theory approximation. Let us consider now several causes of

the appearance of additional "forbidden" resonance absorption lines.
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a) Dipole interaction between magnetic centers

Let us assume that the crystalline field does not split the spin

levels and that consequently each level corresponds to a definite

value M of the spin momentum projection on the direction of the field

H0 . Because of this, magnetic dipole transitions are possible in the

first approximation only between neighboring levels (6M = +1) under

the influence of the oscillating magnetic field perpendicular to the

field H0. We now take into account the magnetic dipole interactions

between the paramagnetic centers of the crystals. Because of the in-

teractions, the wave functions qM(M = S, S - 1, ..., -S), pertaining

to different spin levels become intermixed and assume the form (see
M+2

§5.2) i , where Ei ~ 2/a3(gPH0 )-l; here a is the average dis-
I-M--2

tance between two neighboring magnetic centers. Now the nondiagonal

matrix elements of the vector S will be different from zero not only

in the case when AM = +1, but also for the transitions AM = +2 and +3.

If we assume the intensity of the principal resonance line (AM = +1)

to be equal to one, then the intensity of the lines 6M = +2 and 6M =

= ±3 will be -41Ei12 and 9sieJ 2 , respectively, if the oscillating

field is perpendicular to the field H0. If the fields are parallel,

the transitions AM = +1 and A = +2 give rise to two forbidden reso-

nance lines, the intensity of which is -Ei and 41I, 2 . The exist-

ence of forbidden lines was first established experimentally by Zavoy-

skiy in manganese salts [81], and was later on observed by others [82].

b) Hyperfine interactions

With increasing concentration of the paramagnetic centers, the

intensity of the additional absorption lines, due to the magnetic di-

pole interaction between centers, will become weaker. However, other

forbidden absorption peaks can arise in this case, if the nuclei of the

- 112 -



M

giii

'I:ll'

47) I) I)

Fig. 3.5. Level scheme and
transitions between levels in
the case S = 1/2, I = 1/2. a)
Quadrupole moment of the nu-
cleus is equal to zero, the
alternating magnetic field is
perpendicular to H0 ; b) quad-

rupole moment different from
zero, the alternating field is
perpendicular to H0 ; c) quad-

rupole moment different from
zero, alternating field paral-
lel to H0 (forbidden transi-

tions).

paramagnetic atoms have a spin different from zero. Let us assume that

the spectrum of the paramagnetic resonance can be described by the

following spin Hamiltonian:

.. = { - - s s + 1) +-J- {gj..+g' (H .+ HA)) +
+ A .I+ B (.+ 9,)+ P{I - I,(+ 1)). (3.66)

We assume first that the field H0 is parallel to the Z symmetry axis

of the crystalline field. Figure 3.5a shows the system of energy lev-

els arising under the influence of the magnetic hyperfine interaction

for the particular case S = 1/2, I = 3/2. Because of the quadrupole

interaction, the energy levels cease to be equidistant (Fig. 3.5b). To

each level there corresponds a wave function rIM,m with a definite mag-

netic quantum number M of the electron spin and a magnetic quantum

number m of the nuclear spin. The arrows in Fig. 3.5b denote the trans-

itions that are allowed by the selection rule AM = +1, Am = 0, provided
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the oscillating field is perpendicular to the permanent field.

In the second approximation of perturbation theory, owing to the

term B(SxI x + S y), the wave functions assume the form qM,m +

+ aqM+l,ml' where a - B/g M o . It is easy to verify that now, if the

magnetic oscillating field is parallel to H0 , there should appear addi-

tional absorption peaks, corresponding to the transitions AM = +1,

6M = +2. These transitions are shown in Fig. 3.5c by the dotted arrows.

The intensity of the forbidden lines is related to the intensity of

the principal lines of paramagnetic resonance approximately as jc21:1.

Forbidden absorption lines in parallel fields were observed experimen-

tally in salts of cobalt, manganese, and vanadium [83].

If the field H0 is inclined to the Z axis of the crystal, then

the possibilities for forbidden transitions become greater. The addi-

tional lines appear not only in parallel but also in perpendicular

fields. The spectrum becomes particularly enriched with forbidden

lines if the quadrupole interactions between the nuclei and the crys-

talline field are large [84].

c) Multiple quantum transitions

The reason for the appearance of additional absorption lines may

be quantum transitions connected with simultaneous absorption of sev-

eral photons by the paramagnetic atoms. Such trans-

Lm _ itions, which are forbidden in the first perturba-

tion theory approximation, become possible in the

higher approximations via one or several inter-

Fig. 3.6. Scheme mediate states of the atom. Multiple quantum trans-
of two quantum
transitions be- itions produced under the influence of a powerful
tween levels k
and m. radio frequency field, were first discovered in

experiments with molecular beams [85], and then by the method of nu-

clear magnetic resonance [86]. Observation of electron paramagnetic
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resonance has recently disclosed the existence of multiple quantum

transitions in Mn2+ ions introduced into the MgO lattice (87].

Let us assume that among the energy spin levels there are three

such levels Ek, El, and Em (Fig. 3.6) that wlk 7 "mll but Ikml - "lklI «
<< i/2uemk (wiJ = (Ei - E1)/ 1). We assume also that in first approxima-

tion the transitions between neighboring levels k - 1 and 1 -- m are

allowed, but the transition k - m is forbidden. The state of the

paramagnetic center can be described with the aid of the Hamiltonian

+ Jr "gf.§=- PI(-b (3.67)

where s is the spin Hamiltonian which determines the system of spin
.sp

energy levels of the paramagnetic center, and H' is the time-dependent

part of the Hamiltonian representing the interaction with the radio

frequency magnetic field, while S+ = + A . In this case we con-

sider, to simplify the calculations, a field rotating with angular

velocity w in place of an oscillating field.

We assume that at the initial instant of time the atom is in the

state k. Then in first approximation of the theory of time-dependent

perturbations, the probability that the atom will be in the state 1 at

the instant of time t is 4ZI "-"-4 M
__ _- ; (3.68)

and in the second approximation of perturbation theory we have

la,(ttl -- I' 1( #I . +Iu')I(IS*a 4 ("M-)' X

X* -S)$- 1.__(3.69)

We see that the probability of the transition k *-* m is appreciably

different from zero if, first, the frequency of the alternating field

3is equal approximately to wmk/2, and, second, if the matrix elements
of the perturbation, which relate the levels m and k with the inter-
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mediate level 1, are not equal to zero. Let us now take account of the

fact that the absorption line is finite, for which purpose we intro-

duce the form function g(w) (see §1.3). Carrying out, as usual, the

integration

Wj= ,,j (at)j'gj ) d, (3.70)

we see that the probabilities of the transition are proportional to

the time t. If we take also account of the difference in the popula-

tions of the levels Ek, El, and Em and recognize that the quantity

gij(O) is inversely proportional to the absorption line width Aviji,

then we obtain for the ratio of the intensity 12 of the line due to

the two-quantum transitions, to the intensity I1 of the ordinary 1 --o k

resonant line the following expression:

it = I f. (3.71)
T, I ) -'

We see that the intensity of the line, resulting to the two-quantum

transitions, becomes larger if the frequency of the Larmor precession,

corresponding to the magnetic field H1 , is comparable with the fre-

quency interval between the ordinary absorption line, connected with

the transitions k --+ 1 and 1 *-- m. We note that when the power of the

radio frequency field is so large that gpH/1 h - (wlk - 1/2wmk)' then

the use of perturbation theory is not Justified, and formula (3.71) is

no longer valid.

Along with the two-quantum transitions which we have considered,

other transitions are also possible, due to the absorption of three or

more photons. In the third perturbation-theory approximation we obtain

for the probability of a three-quantum transition

- 116 -



jao8()I' , l1Pfl(kl$+ll) III (l+l i, ) I' ( , +10I'

64*l' ( ) - )' (w6j - 20)'

XI 'ank -1.1(3.72)

Here 1 and m are intermediate states through which the transition un-

der consideration becomes possible.
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Manu-
script [Footnotes]
Page
No.

56 Certain exceptions will be discussed later (see §3.11).

88 In this section we do not concern ourselves with salts hav-
ing ions in the S state.

90 Exceptions are encountered. For example, in cerium ethyl
sulfate the two lower levels of the ion are noticeably pop-
ulated even at liquid-helium temperature.

99 By orbitals we mean, as is customary in quantum chemistry,
the "orbital" wave functions of individual electrons.

100 If the octahedral complex is formed by water molecules, then
the oxygen atom faces the M atom.

105 We use Mulliken's notation for the terms of the octahedral
complex [73].

Manu-
script (List of Transliterated Symbols]
Page
No.
59 Kp = kr = kristallicheskiy = crystalline
61 TeTp = tetr = tetragonal'nyy = tetragonal
61 Tpmr = trig = trigonal'nyy = trigonal
61 reKc = geks = geksagonal'nyy = hexagonal
61 pom6 = romb = rombicheskiy = rhombic
61 TpKKn = trikl = triklinicheskiy = triclinic
61 Kyd = kub = kubicheskiy = cubic
71 cn = sp = spin = spin
81 3 = eff = effektivnyy = effective
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Chapter 4

SPECTRA OF IONIC CRYSTALS. EXPERIMENT

§4.1. Introduction. Crystallographic Data

The experimental data on the paramagnetic resonance spectra in

solids are listed below in the form of tables in §4.2. The data on

spectra in liquid solutions of salts are contained in §4.3. Finally,

§4.4 gives information on nuclear spins discovered with the aid of

paramagnetic resonance. In the first column of the tables in §4.2

there are contained, in addition to the chemical formulas for the para-

magnetic substance, also the degree of its dilution by the diamagnet

(usually in atomic percent) and data on the crystal structure. If the

latter is included among the ten most important types considered in

the present section (see below, pages 126-129), the corresponding num-

ber is listed in the first column. For example, cr. st. 1 denotes that

the compound is of the alum type. For other crystal structures, refer-

ence is made to the corresponding crystallographic literature; the num-

ber of such reference is accompanied by the letter "k." A list of

these references is given for all the ions at the end of the chapter.

The next columns give the temperature of the experiment and the basic

spin-Hamiltonian constants in cm-1 ,* determined from the type of the

spectrum.

The arrangement of the material follows that used in the preceding

chapter. We first consider the ions of the iron group, the lower or-

bital level of which in octahedral magnetic complexes is a singlet

(V 2 + , C3 + , Ni2+), and the neighboring ions Cr 2 + , Mn3 + and Cu2 + , which
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also have a lower orbital singlet in a crystal field with tetragonal

component. Finally, it is necessary to include in the same group such

compounds as CsCoCl5, in which the magnetic ion Co
2+ is surrounded by

a distorted tetrahedron of Cl'. In a tetrahedral magnetic complex, the

sign of the cubic field is opposite that in an octahedral complex.

Consequently, the orbital levels are inverted, and the Co2+ ion pro-

duces in this compound a spectrum which is similar to the spectra of

the compounds of trivalent chromium or divalent vanadium.

The next group of tables contains data on the ions Ti 3 +, V4 +, V3 +,

Fe 2+, and Co2+ (Table 4.2). These are followed by the rare earths. We

first give data for the rare-earth ions with odd number of electrons

(Table 4.3), and then for those with even numbers (Table 4.4).

The ions of all the periodic-system groups in the S state (Mn2+,

Fe3+ , Gd3 + , Eu2+ , and Cm3+) are listed separately (Table 4.5).

The next set of tables is devoted to compounds in which strong

covalent bonds occur between the paramagnetic ion and its surroundings

(individual compounds of the iron group, and also compounds of the

palladium and platinum groups, and finally the actinides; see Table

4.6).

Table 4.7 lists some data on the compounds containing atoms of

metals in anomalous valence states.

Within each group of tables, the ions appear in order of increasing

atomic number of the element in the periodic system.

To facilitate the use of the bibliography, the references are

given for each ion separately. The remarks contain certain special in-

formation concerning the structure of the given compound and other

properties. The symbols used in the tables are explained on page 3.

For each ion, the data obtained with dilute single crystals are

followed by a list of substances investigated only in the form of pow-

-124 -



ders or magnetically concentrated single crystals, together with those

constants which were determined by this investigation.

To explain the form of the paramagnetic resonance spectrum of an

ionic crystal it is necessary to have certain crystallographic data,

usually obtained by x-ray structural analysis. The paramagnetic prop-

erties of salts are determined essentially by the magnetic complexes

contained in these salts. It is very important to know how many such

complexes there are in each crystal cell, and what their arrangement

is. We therefore relate with each magnetic complex a rectangular coor-

dinate system X, Y, Z. If the crystal cell contains only one magnetic

complex or if there are several complexes which are all equivalent and

identically oriented, then the axes X, Y, Z coincide with the prin-

cipal axes K1 , K2 , K3 of the magnetic susceptibility tensor. In the

general case, on the other hand, the axes K1 , K2, and K3 are the result

of the averaging of the axes X, Y, Z of different magnetic complexes.

It must be borne in mind that the axes K1 , K2, K3 do not coincide in

the majority of cases with the crystallographic axes a, b, c.

The magnetic complexes of the compounds of the 3d, 4d, and 5d

transition groups frequently are octahedra with a paramagnetic ion M

at the center and identical particles X on the vertices, at a distance

R from the center. Such particles can be water molecules (the interval

between M and the oxygen atom is approximately 2 A), halide ions (R

2.5 A), CN radicals (distance from M to C - 1.8 A and to N = 3 A).

Owing to the Jahn-Teller effect and to the particles surrounding the

magnetic complex, the octahedron is so deformed that the electric field

acting on the ion M acquires either trigonal or tetragonal or even

lower symmetry. The first of these factors explains why the crystal

field can change appreciably when the particle M is replaced by another

one, even if the surrounding remains completely the same. The second
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reason explains why perfectly identical complexes MX6 can have differ-

ent symmetries in different salts.

We consider first the most widely investigated hydrated salts of

the iron-group elements, the octahedral complexes of which contain six

water molecules.

1) Alums [1-3]: M'M"'(S*04 )2.6H20, where M' = K, Na, Rb, Cs, NH4,

0.., M"= Al, Gd, La, ... or the trivalent ion of the 3d group S* =

= S, Se. The symmetry of the crystal is cubic. Each cell contains four

complexes, the positions of which change in different allotropic mod-

ifications. The existence of a, p, and y modifications is apparently

connected with the difference in the dimensions of the monovalent ions

M'. In the a modifications, the octahedral complexes are somewhat de-

formed along the trigonal axes of the crystal: [111], [ 11], [I71],

[117]; the cubic axes of the octahedra, on the other hand, are turned

about the [111] crystal axis. All four complexes of the unit cell of

the p modification are perfectly equivalent; the cubic axes of the oc-

tahedra coincide with the cubic axes of the crystal. The paramagnetic

resonance in the crystals of the T modification was not investigated.

At temperatures 80-1600K one observes phase transitions which change

the symmetry of the magnetic complexes. The a structure of the alums

usually occurs in salts with M' = K, Rb, Tl, and NH4, p alums occur

for M' = Cs, (NH3CH 3 ), and Y alums occur for M' = Na.

2) Tutton's salts [1, 4, 5]: M'2M"(S*04 )2 -6H20, where M' = K, Rb,

NH4 , ... , = Mg, Zn, or a divalent ion of the 3d group. The crystal

is monoclinic and contains in each cell two M"(H 2 0)6 conplexes. Four

water molecules are located at a distance 1.9 A from M", forming al-

most a square, while the two other molecules are 2.15 A away from M".

Thus, the symmetry of the complex is close to tetragonal. One can

choose the Z axis as the tetragonal symmetry axis.
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A reflection from the ac plane transfers the X, Y, Z axes of one

of the complexes into the axes of the other complex. The angle between

the Z axis and the ac plane is designated a. * denotes the angle be-

tween c and the projection of Z on the ac plane.

3) Double nitrates [1]: M"3M"'2 (N03 )1 2.24H2 0, where M" = Mg, Zn,

or a divalent ion of the 3d group, Mi' = Bi, ..., or a trivalent ion

of the 4f group. The crystal is trigonal and contains one trivalent

and two divalent ions in each unit cell. The two 3d-magnetic complexes

M"(H20)6 have trigonal deformations that are somewhat different in mag-

nitude.

4) Fluorosilicates [1, 6, 7]: M"SiF6 .6H2 0, where M" = Zn, Mg, or

a divalent ion of the 3d group. The crystal is trigonal; it has been

assumed that it contains one molecule per cell and that the magnetic

complex is slightly deformed in the direction of the trigonal axis.

Paramagnetic resonance investigations have shown that there are six

magnetic complexes in each unit crystal cell, differing only in the

orientation of the deformation axes.

5) Bromates [1, 8]: M"(BrO3 )2.6H20, where M" = Zn or a divalent

ion of the 3d group. The crystal has a cubic symmetry. The four

M"(H 2 0)6 complexes contained in the unit cell are octahedra distorted

along the trigonal axes, similar to the analogous complexes of the a

alums.

6) Sulfates [1, 9]: M"SO4"7H 2 0. A study was made of the structure

of crystals in which M" = Ni, Zn, Mg; the symmetry is orthorhombic.

Each unit cell of the crystal contains four complexes, the axes of

which go over into one another upon reflection from the symmetry planes

(100), (010), and (001).

In addition to the hydrated salts of the 3d-group elements, the

most thorough investigations were made of the cyan compounds, in which
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the octahedral complexes contain six CN radicals. Two isomorphic series

of cyanides were investigated:

7a) I3M'(CN)6, M'" = Cr, Mn, Fe, Co. The crystal has a symmetry

which is very close to orthorhombic [1, 10-12].

7b) K4M"(CN)6.3H2 0, M" = V, Mn, Fe. The symmetry of the crystal

is monoclinic and very close to tetragonal [1, 13].

In both series, a unit cell of the crystal contained four magnetic

complexes which were pairwise equivalent.

The X, Y, Z axes of one pair can be obtained by reflecting the

axes of the second pair of complexes from three mutually perpendicular

planes of the crystal. Among the compounds of the 4d and 5d group ele-

ments, the crystals investigated in greater detail are those contain-

ing octahedral complexes formed by halides, namely:

8a) MI2MIVX6 1 M' =K, NH4, ... MIV  Pt, Ir, Mo, ... , X= Cl, Br

[1, 14]. The crystals have a cubic symmetry. In the case when X = Cl,

all the magnetic complexes of the crystal cell turn out to be fully

equivalent to one another. On the other hand, if X = Br, then the oc-

tahedra of the three complexes contained in the crystal cell are some-

what distorted along the three different cubic axes.

8b) Na2MIV X6 -6H2 0, MIV= Ir, Pt, X = Cl, Br [1]. The crystal is

triclinic; the number of complexes per unit cell is unknown, but they

are all perfectly equivalent magnetically. There is a large rhombic

predominantly tetragonal distortion of the symmetry of the octahedral

complex.

There are apparently no octahedral complexes in salts of the rare

earth elements. The following compounds were investigated in detail:

9) Ethyl sulfates (1, 15]: M"'(C 2H5 SO4 )3 "9H2 0, where M"' is a

trivalent ion of the 4f group. The crystals are trigonal, and each

unit cell contains two complexes which are perfectly equivalent. Nine
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water molecules are located at the vertices of three identical equi-

lateral triangles, which are parallel to one another and whose planes

are perpendicular to the trigonal axes of the crystal. In the center

of the middle triangle is located the rare-earth ion; the outermost

triangles are turned by an angle 7r/3 relative to the middle triangle.

The double nitrates (MI3 M't2 (NO3 )12.24H2 0) were considered above

(see item 3). We note that the rare-earth ion is surrounded by (NO3 )

groups which produce a field of trigonal symmetry.

10) Nitrates. From among the compounds of the 5f-group elements,

the ones investigated in detail are rubidium nitrates, containing

groups of the uranyl type [16] (MIV02Rb(NO3 )3, where MIV= U, Np, Pu,

... ). The symmetry of the crystal is rhombohedral; each unit cell has

two equivalent complexes. Each complex contains the linear group

O-MIV-O, parallel to the hexagonal axis of the crystal, and surrounded

by three nitrate groups situated in a plane perpendicular to the hex-

agonal axis.
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4.2. Spin-Hamiltonian Constants for Solid Paramagnets

1. Iron group ions (L 1 0) with lower orbital singlets (see Table 4.1,
pages 13-151).

3d 3 (V2 + and Cr3 + )

The lower orbital singlet arising under the influence of the octa-

hedral field has a fourfold spin degeneracy, which is split by the

lower-symmetry fields into two Kramers doublets. The spin Hamiltonian

has the form

+ A (S ,+ S~~+ S, 4j

with S = 3/2, I 0 for the even isotopes Cr3+ , 3/2 for 53Cr, 7/2 for
51V, and 6 for 5 0V. The value of I for 50 V has been determined from

experiments on paramagnetic resonance.

If the hyperfine structure is disregarded, the levels in a field

HO I Z are described by the formula

gp._ ± {(D + gpH.)' 30 )

2 gHI. _± {(D - dI.),+ 3EI}

The hyperfine structure in Cr3 + salts is frequently unresolved owing

to the smallness of the constant A and the considerable width of the

absorption lines.

In salts of 51V, with a field H0 1 Z and when gpH0 >> E and A, ac-

count of the hyperfine structure yields for the levels

7 5~~T m ---D0- A, ±-gi-D±.
29)D

In analogy with the V2 + and Cr 3 + in an octahedral environment,

the Co2+ in a tetrahedral complex has a lower orbital singlet which is

fourfold spin-degenerate. The only investigated compound Cs 3CoCI 5

yielded a spectrum described by means of a spin Hamiltonian
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~~%s=_ g1 t,,gP (H.Q + H"§, + D (§, -A~-

with S = 3/2, without a resolved hyperfine structure, owing to the

large width of the lines.

3d ( Cr2 + , Mn3+)

The cubic field of the octahedron and the trigonal field leave

the lower orbital doublet degenerate. The orbital degeneracy is lifted

by a tetragonal field; the lower orbital level remains quintuply spin-

degenerate, with the degeneracy lifted by a rhombic field.

Only the sulfate of divalent chromium was investigated. The hy-

perfine structure due to 51Cr was not resolved. The spin Hamiltonian

has the form (S = 2):

The levels in a field H01 IZ are situated at

-2D; - D -h (g P21P -H9E2)' ; 2D± =rE 2,H.

The Mn3 + compounds were not investigated.

3d8 (Ni2+ )

In an octahedral field the lower orbital level is a singlet that

is triply spin degenerate; the trigonal and tetragonal fields split

this level into a doublet and a singlet, while rhombic fields split it

into three singlets. The experimental results are described by a spin

Hamilt onian

with S = 1 and isotropic g; no hyperfine structure was observed. For a

field H01IZ the levels corresponded to

-- D2 _+(E,+f'TIp -._

3d9 (Cu2+ )

In an octahedral field, the lower orbital level is a "nonmagnetic"
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doublet. A field of rhombic or tetragonal symmetry splits this level

into two Kramers doublets. A trigonal field does not split the lower

& orbital doublet; in this case the orbital degeneracy is lifted by the

Jahn-Teller effect or by the spin-orbit coupling. The experimental re-

sults are described by a spin Hamiltonian

+" P 0+ P d-,") +.ph
with

S = 1/2 and I = 3/2.

When H01 1Z and gpH0 >> A >> P' the levels are at +l/2gzH 0 +

+ 1/2Azm + P (m2 - 5/4), where m = 3/2, 1/2, -1/2, -3/2. A special

case is copper acetate, which was considered above in Chapter 3.

The behavior of the Ti3+ in a tetrahedral surrounding should be

analogous to that of the copper ions.

2. Iron-group ions (L 0) with lower orbital triplet (see Table 4.2,
pages 152-155)

3d1 (Ti3+, V , Mn6+ )

In an octahedral field, the lower level is an orbital triplet,

which is split into three Kramers doublets by the lower-symmetry field.

When the octahedral complex is weakly distorted, the spin-lattice re-

laxation time is quite short and the effect is observed only at very

low temperatures. In the case of strong distortion (the VO2+ or MnO-

ion), the relaxation time is long enough to observe the effect at room

temperatures. In Ti3+ salts, the results are described by the follow-

ing Hamiltonian (S = 1/2):

Q*'gIP~isz+gjP( f+H/)

The hyperfine structure has not been resolved for Ti 3 +. It is ob-

served in dilute vanadyl salts (I = 7/2 for 51V).
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3d 2 (V3 + , Fe2+)

In an octahedral field, the lower level is an orbital triplet

with quintuple spin degeneracy. A rhombic field lifts the degeneracy

completely. In the case of (Fe, Zn)F 2 one observes a weakly split

lower doublet. The spectrum is described by a Hamiltonian (S = 1/2,

g. = 0) gjjPHI 9

where A characterizes a weak splitting of the doublet by the low-sym-

metry components of the crystalline field.

3d 7 (Co2 + )

In an octahedral field the lower orbital triplet is degenerate

and is split into Kramers doublets by the lower-symmetry fields and by

the spin-orbit coupling. The results of the experiments are described

by a Hamiltonian (S = 1/2, I = 7/2)

(g+,9 + .9 yH y +A,.1+ A.§f. + A, y ,.
Sometimes one obtains gx = gy = gI; AX = Ay = AI (axial symmetry).

3. Rare-earth ions (L pZ 0) with odd number of electrons (see Table 4.3,
pages 15b-150)

4f1 (Ce3+), 4f3 (Nd3+), 4f5 (Sm3+).
4f ( +), 4f (Er3+), 4f13 (yb3+)

In the investigated cases, the experimental data are described by

a Hamiltonian (S' = 1/2)

to which one adds in the case of odd isotopes the terms of the hyper-

fine interaction Agz z + B(SxI x + Ayiy). Sometimes (in ethyl sulfates

of Ce3 +) a second doublet is observed, described by the same Hamilton-

ian and located several cm-1 away from the lower one.
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4. Rare-earth ions with even number of electrons (see Table 4.4, pages
159-160)

4f2(pr3 +) 4f (Pm3+), 4f 6 (Eu3+), 4f8(T 3+),
.4f'°(Ho3+), 4fl2(Tm3+)

Since the number of electrons in these ions is even, the lower

spin doublet can be nondegenerate. However, a trigonal field does not

lift the degeneracy, and the components of the lower symmetry in ethyl

sulfate and double nitrate crystals are small. Paramagnetic resonance

is therefore observable; the available experimental data are described

by a Hamiltonian

i*=g1 1 -,S, + 911+ A,, +SA,.

In this case g is assumed equal to zero; the terms A represent small

splittings, due to distortion by a field which has a symmetry lower

than trigonal.

5. Ions in the S state (see Table 4.5, pages 160-169)

3d5(Mn2+ , Fe3+ )

The lower orbital level is a singlet with sixfold spin degeneracy.

The electric field of the water octahedron splits the singlet into

three Kramers doublets which are usually spaced less than 1 cm-I apart.

The spin Hamiltonian (for the odd isotopes) has the form

Here a is the splitting by the cubic field, , , are mutually per-

pendicular axes, with respect to which the Z axis is in the (111] di-

rection.

If the symmetry of the magnetic complex is not higher than ortho-

rhombic (for example, in Tutton's salts of M n
2+ ), then a term E(2

A 2) is added to the Hamiltonian.
y
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4f7(G3+, Eu2+)

Because of the large value S = 7/2, the spin Hamiltonian is very

complicated and will not be written out here. It can be written (with-

out account of the hyperfine structure) in the form

• + A, + B;t + += + B's.a;,
Here each is an operator; the coefficients Bm are determined from

n n
experiment. For the sake of convenience, one frequently uses the fol-

lowing notation

b=38, b=3B2 b=60B, bj=1260B, b6==12608L'

withb=D b 2 =, 3b6 = F.

In the case of Eu2+, which was investigated in a field of cubic

symmetry, g and A are isotropic, but the complete spin Hamiltonian was

not established.

6. Compounds with strong covalent bond (see Table 4.6, pages 169-173)

Included among such substances are the cyanides of trivalent iron

and divalent manganese from the 3d group, and also all the investigated

paramagnets from among the compounds of elements of the 4d and 5d

groups.

For Fe I I I , MnI I , MoV , RuI I I , AgII, and Ir I V , the effective spins

have a value S' = 1/2 and the spectrum is described by a spin Hamil-

tonian

P (gHS, + g.HIS 2 + g^9:)

to which the corresponding terms that take the hyperfine structure into

account are added for the odd isotopes. In some oases one must also

take into account the hyperfine structure due to the interaction be-

tween the uncompensated electron and the spins of the nuclei of the

atoms which are covalently bound with the central atom (for example,
in the case of (NH4 )2 [IrCl 6J, diluted with the corresponding platinum

salt). - 136 -



For MoII and ReIv, the spin Hamiltonian has the form

(g.H.9, + g.14&. '+ gH,) +
+ D - I S(S+ 1)) + E

with effective spin S' = 3/2. For odd isotopes one should add to the

Hamiltonian the terms characterizing the hyperfine structure of the

spectrum.

The number of compounds of the elements of the 4d and 5d groups,

in which paramagnetic resonance spectra were investigated, is very

small; one of the difficulties entailed in the investigation is the

choice of isomorphous diamagnetic salts necessary to weaken the mag-

netic dipole interactions, for the latter are quite appreciable when

the indicated compounds are in the undilute state. The last group in

the class of substances with strong covalent bonds is made up of the

actinide compounds. Paramagnetic resonance is these compounds has also

been investigated in a very small number of cases. In double neptunyl

nitrate, the spectrum is described by a spin Hamiltonian
-= .gjH,&. + gP (H + HA) + AA, +(H& + A.

with effective spin S' = 1/2 and I = 5/2 (for the odd isotope 237Np).

For plutonyl we have g, = 0 and the spin Hamiltonian has the form

The effective spin is S' = 1/2; the value of I is 1/2 for 23 9 Pu and

5/2 for 241Pu. The last two terms of the Hamiltonian describe small

splittings due to the distortions of the crystal and to thermal fluc-

tuations.
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TABLE 4.1
V 2+

1 "o0PUY~a J. AK }J9j TauDuiA
4 (NH 4), V (SO,), -6H,O

Kj. CT. 2)
V:n=:3 290 ,1 [1]

:t 0005 6"A

V: Zn = 10- 20 1,951 0,158 0,049 0,0088 [2, 31 = 2",
± 0,002 ±0,010 t 0,005 ±t" 0,0002 2

"A - 0,3792
4 K,V (CN), • 1H,0 gj gy 9z &= i t 0 0008

(-p. CT. Z 60A
V: Fe 0,.1-5• 10"- 90, 20 1,9919 1,9920 1,9920 -0,0264 -0,0072 -0,00211

:t0,0006 ± 0,0006 ±0,0006 0,0004 ± 0,0004 ±t 0,00003 [4, 5] 8)
"tA- 0,00555

±0,0000.3
V + B AI1O, 290 -"1,98 -'0,31 A a B=O,0091
V + a MgO 290 1,9803 "A - 0,00740 6

V : Mg -- 2.10-7 . ±.0,0005 ±0,00002

- v' a ZnSiF,. HO 20 1,90 111 0.0804 - 0[003 [101

Paramagnetic resonance is observed also in'VS04 (T = 290 0 K) [7];

V(C6H4 )4 (CN)8  (T = from 270 to 20
0 K, g = 2.0) [8]; V2+ in phthalocya-

nine (T = 290, 200K, g = 2.0) [11].
Remarks. a) The direction cosines are:

a b C
X 0,707 0 -0,707
Y 0,523 ± 0.676 -0,523
Z 0,470 - 0,737 -0.470

Or3+

1 0opuyis r. *K ~ ___________ I D BA jZePaTYP-I33a4sueua

C8Cr (SO,),. 12H,O 290 1,98 0,072, 11-31
4 (lp. C,.1) ± 0,003

193 1,98 -0,067
-0,02

90. 20 1,98 -0,066,
±0,02 _ 0,001

KCr (SO),. 12HsO 290 1,98 0,060 [1--1
4 (6p. CT. I) - 0,003

193 1,98 0,027
_ 0,02 t 0,003

160 1,98 0,017,
0.02

90 1,98 1:0,130
±0,02 11:0,075

- 0,005
20 1,98 I: 0.135

±0,02 ±t 0,002
11:0,075
-0,005

Cr:AI-2:17 290 1,98 0,045& f41
(NH6CH) Cr(SO. 12H1,O 290 1,98, 0,082s 8I,,1, 8] 6) b

u p. cT. ±) ;t-0,003
.90 1,97, 0,087 0,009

±0,01 ±t" 0,002 ±r" 0,001
20 1,976 -0,0871 -0,0092

_ 0,007 ± 0,0007 ± 0,0008

Cr: Ai M 10
"  90 ' 1,97, 0,095. 0,009 [7)

1:0,01 ;t- 0,002 t- ,0o01* 6)20 I'm7 - 0098 - A 0.00 81
:t A A,,I --,O" :t 0,099
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TABLE 4.1 (Continuation)

1 4OPMYIt,'KI D A JINTOPSTIPA 3iau

4(NH) Cr (SO,),. 12H,O 290 1,98 0,067, 1-5,, 101 r) d
(Kp. ci. I) ± 0,003

193 1,98 0,042,.
: 0,02

90 1,08 0,017,' .002 Oj ,
80 1,98 1: 0,157

0,02 :± 0,002
11:0,121
: 0,002

20 1,98 1:0,158
-t 0,02 ±t 0,002

I1: 0,120
, :t 0,002

Cr: AI=2:17 290 1,97 ±0,050
Cr: AI 1 :0 2 5 1,988 0,0675 I) e
Cr:Al= 1:17 ;0,001 ±0,0010

1,9771 0,0492
-10,0010 ±0,0005

Cr: Al'= 1 :47 1,9772 0,0490
+0,0010 ±0,0005

C: A I : 47 77 1,9765

I(NH,) C.I C (SO,).. , O ± 0,0010
4 (Mp. CT. I)

Cr:At--,1':20 373 1:1,980 1:0,0610 t] e) r
±t 0,005 ± 0,0004
11: 1,980 11:0,0488
±: 0,002 ±t 0,0004

290 1:1,980 1: 0,0750
±0,003 ± 0,0002

11: 1,977 11:0,0590

±0,001 -t 0,0002

Cr: AI 1 :50 295 1,975 1:0,0576
0,005 -0,0005

11:0,0730
-- 0,0005

195 1,975 1: 0,0696
± 0,005 t 0,0006

11:0,0882
±. 0,0010

77 1,975 1: 0,0822
t 0,005 i 0,0010

I1: 0,105
±0,003

35 1,975 1:0,085
0,005 -- 0,003

I1: 0,109
-t-0,005

Rb Cc (SOt), . 12HtO 290 1,98 0,082
(19P. 9T. 1) :t 0,003

193 1,98 0,063
± 0,02

90, 2D 1,98 0,054
±0,02 ;t 0,001

KCr (SeO) . 121-10 .90 0,064 [7].
(Up. CT. 1) .. 0,002

20 0,070
:±:0,002

0,089,
Cr:A1.:10 .- '- 0,001

20 0,09
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TABLE 4.1 (Continuation)

1 OopUyaa T. 'K D A jf JIluupaiypa saMqaMNI

Cr : Al = 10-2 90 1,976 0,0900 [14]
_ 0,002 + 0,0003

20 1,976 0,0983

K- 0,002 0,0003
KCr (ScO). 1)2DsO 90,20 1,976 0,10, 0,0018, [14]

Al: Cr - 0,002 L 0,0001
K(Cr (CN), 90,20 1,998 .- 0045 ,.0,013 [39, 15, 16] )g

S(p. CT.7) 42 ±t 0,008

Cr:Co=l0,1-10- 90,20 193 1 1, 91 +0,0831 +0,0108 +0,00147 [15, 16] 3) h
±t 0,001 ±+ 0,001 -- 0,001 -- 0,0010 -0,00100,00005

g
4,2 1,992

Cr:Mn=0,1-10-' 90,20 
t  0,0002

1,92 1R5 1,993 + 0,0538 + 0,0120 + 0,00147 i) J
Cr [(CHICO) CHI& ", 0.002 t 0,002 t 0,002 ±t 0,0010 -t 0,0010 : O,00010

[K. I]

Cr: AI = 1:50 290 1,983 0,592 0052 [171 0 k
Cr[CHCF±(CO).CHj, -, 0,002 ±t 0,002 -t 0,002 M, 2

C r : Al 290 -1,98 0,'% [181 M,=% 2

opTopoM6Hq. A
Cr [(CF&CO). CH], 290 1,98 0,70 [18] M = 1

-5 C ,+ a tl.O 290 1,97 0,55 0,27 0.0017 [351 rexcarou. B
Cr: Ti = 10-=

5 Crf+ a AIsOs
Cr : A! = 10--10 -  290 1,982 1,979 - 0,1912 [19-21, 231

(O4.rsmenu seq-um- -I uox) 4,2 t 0,002 :r 0,009 ±" 0,0010
Cc : At= 10- 290 A o01680 122. 231

a 0.001680

5 Cr a AIBe (S1O$). 78 1,973 1,97 - 0,893 M=%
1.6 :- 0.002 ±t 0,01 -t 0.002 1341 M = I.

retcito. B
5 Cr+ a CaF 90,20

Cr :Ca = 10" %.00,0010 1401 n)

5 Cra MKO 290,77 I 00010 (24,36)
Cr: Mg M lO r- 10r ± 00006 :0,00003 -

1,980 1,986 0,0819 A=B 1241 M =3,,)
290, 77 ± 0,001 ± 0,001 o,0102

90,. 20 0,031 0,22 0,00004

98 -±- 0,002 ±0.01 3^ 371 14= me) n
Cr+ D ZnF, 290 1:1,976 1:1,958 1:,0,602 (251 K) m

5 Cr:Zn-I1- ±0,007 t 0,004 -- 0,008 Mn-2 o)
11:1,975 11:1,959 11:0,581
: 0,007 :t 0,006 ±t 0,008

Paramagnetic resonance absorption was observed also at room temperature ir

nfapamr ,rHoe pe3OH3HCHOe norome,.e ,aWACHO Taize n H KoXHaHOR Tenepage a CrBr_(= IV 61;Cr(CH,
Os).HO 1261; Cr(C.HN)s(OH) (H,O)CI(g=,I9) (271; Cr(C, 1, 0 ,g 2,07) [ 21; Cr(VCHa)$(CH), C3 ,(CO),Sj
(gvw2, D>-wO,5)[17; Cr [(CH,)(CO)sCHCHala (f,2, D>-mO,5 17, CrC1 (= 1,99-2,37)[28, 41, 42; CrF'

2 00 [6, [Cr (sO CI Ci (C= 1,95) (271; [Cr (HO), C 1sl.C •2HsO 181; r H s ,I.:.O Sr (NH,), CCiC=
,97 r(N,) i .HTO11:1,) - I9 .1; [Cr(NH),I6NO,).. H 3 __-- .)7, I r(NHCj I CI

, ( , [2, , CrO. , .Or -(, 2 [ ,) CHk (SO,

O.(S,).15,O20;Cr, (Sd. IS= Z=20)Il K r (C, O0, 3
1

4 ,O (aM- ,%u=,04 11 O, (rCHN) (O),2, ( = 0,0 -- 1 K)( 1, O ; ,(= !,9 -,- 0,0= 2,21; K,C, (SO,)..24 ,O [=21; CruCaP,[ail.

A) Orthorhombic; B) hexagonal; C) (enriched with odd isotope).
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Remarks:

a) Below 160'K there are two different magnetic complexes.

b) The temperature of the crystalline transition is 157 + 20K.

Below this point, the spectrum corresponds to rhombic symmetry; the

direction cosines of the rhombic axes relative to the tetragonal axes

a, b, c are:

a b c
X - 0,35 ± 0,05 -0,35 ± 0,05 ± 0,87 - 0,03
Y +0,71 ±0,04 -0,71 :0,04 0 ±t.0,05
Z +0,61 -,-±0,04 +0,61 -t±0,04 ± 0,50 ±_0,04

The directions for the other three ions are obtained by rotating

the XYZ system about the c axis through angles n/2. D and E remain un-

changed between 90 and 13 K.

c) The temperature of the crystalline transition 170 + 20 K. Below

this point the spectrum corresponds to rhombic symmetry.

d) Crystalline transition near 800 K. Below this temperature there

are two different magnetic complexes.

e) 6 decreases at an approximate rate 0.0005 cm-1 deg - 1 in the

temperature interval from 295 to 770 K, i.e., the trigonal component of

the crystalline field decreases with decreasing temperature.

f) The crystal has three aluminum atoms per unit cell, located on

the C3 axis, but only two of them are equivalent. This explains the

observed intensities of spectra I and II: spectrum I is twice as in-

tense.

g) Only one line.

h) The direction cosines of the angles at T = 20 0 K are:
a b c

X 0,104 ± 0,994 0
Y 0' 0 .I
Z 0,994 :± 0,104 0

J) The direction cosines of the angles at T = 900K are:
a b c

X 0 :t 0,996 0,087
Y 0 A: 0,087 0,996
Z I 0 0
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k) The nearest surrounding of Cr3 + in acetyl acetonate and its

fluorine derivatives is a distorted octahedron made up of six oxygen

atoms; the local field is essentially axial. Between 290 and 90OK one

observes in acetyl acetonate a gradual transition wherein the complex

splits at 90°K into three types with slightly different orientations

of the Z axes, or having a somewhat different splitting; * = +22.50,

0a = 59

1) The spectrum, which consists of one isotropic line, shows that

Cr3 + is in a strictly cubic crystalline field.

m) the spectrum belongs to the Cr3 + ions in an axial crystalline

field. The axes of the nonequivalent ions are directed along the cubic

axes. The spectrum arises at large concentrations of Cr3 +.

n) The spectrum belongs to the Cr3 + ions in a rhombic crystalline

field. The directions of the X, Y, and Z axes are: X = (110), Y = (170),

Z = (001). The number of Cr3 + ions in the rhombic field constitutes

1/2 to 1/4 of the number of Cr3+ in the cubic field. The spectrum

arises at large concentrations of Cr3 +.

o) The presence of two spectra is attributed to different relative

arrangements of the Cr3 + ions and the compensating F- ions; the hyper-

fine interaction with the F nuclei causes only a broadening of the

lines. The constant of this interaction is approximately 3-5 oersteds.

The constant of the hyperfine interaction with the 19F nuclei is ap-

proximately 20 oersteds. Absorption in zero field occurs at a frequency

v = (2847 + 2)'i0 " 4 sec " I .
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TABLE 4.1 (Continuation)

Co**

1211 popmyfa F.1K eli l 9 y D i 3*AMNaKHS

CCOCI, 90, 20 2,32 2,27,---4,3 0 [1) M=4. Kawzaijt A
[K 2] L 0,04 ± 0,04 HOH oxpywcH HcKa-

IceiIbim Terpa -
pom, in 4C1. M,,, 1,
cnerp COO 'CT.
cTByeT aKCIa.;' ;1O
CNMMeTpIII C Ccbio,
- -apaaae.abHOf 0

Cr"

1 *opUy,. , .K tfL D Z .P. y 3 3am, un..

CrSO 51110 1,5 1,; ,24 10,101 (1 M1 Mn5 yro BI c3y ocaux

1-- PUYAa 7p. -K Z D ± 0,0 
I

K,Ni (SO,),.- 611,0 290 2,25 -3,30 -0,51, - 12,5 11 45 [1)
4 (.CT2)L005-3,50 -055 [21

± 0,01 L- 0,01
NIH,),NI(SO,) .6H,O 290 2,25 -2,24 -0,38, -14 3,5 45 (I, 21 a)

(XP. ¢T. 2) ±t 0,05 ± 0,01 ± 0,01
90 2,25 -1,99 -0,48. -14 3,5 45 1I1

-± 0,05
TIjNi (SO,),. 6H, 290 2,25 -2,65 -- 0,10 -II I 454 (cp. cr. 2) -± 0,05
KNi(SeO,), .6HO 290 2,25-3 -1 -13 0 45 1

4 (ip. C). ) 2 0,05
Ni(SeO,).6H±O 29 2,25-1,89 -0,79 -28 0 50 [1]

, (,p. c . ) :t 0 ,0 5

90 2,25,-1,73 -0,82 -28 0 50 1I
±t 0,05h .:La,(NO,),,.2411,O 90 2,24 0,177 0 (31

"1" " ' " " ) ±0,002

A) M = 4. Each ion is surrounded by a dis-
torted tetrahedron made up of' 4 chlorine
atoms. M = 1, the spectrum corresponds to

axial synm.etry with an axis parallel to c.
B) m = 2, the angle between the Z axes Is

860.
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TABLE 4.1 (Continuation)

1 oPYA, r, D . .g I' T.. I It .

NiSIF.. 6H 8O 290 2,3 - 0,50 04, 5 6) b
4 (KP. CT. 4) 195 2,29 - 0,32 0

90 2,26 -0,17 0
60 -0,14 0
20 2,29 -- 0,12 0
14 -0,12 0

290 2,34 - 0,6 [6] B) C
t 0,02

Ni (BrO.), • 6HO 290 2,29 1,93 0 (7]
(ICp. CT. 5) :- 0,04 - 0,04

NiSO,. 1HO 290 2,2. - 3,5 - 1,5. [81 r) d4 1 -. CT. 6)

Nit + n M.O 290 2,225 [9, 101 x) e
A (nopoWoM, : 0,005

77 2,227
- 0,005

4 2,234
± 0,004

Ni' CdCI, 20 2,28 1,4100 161 c) f
NICI, 290 2,25 117 ) g

A (nopouoW) 90 2,24
50,2 2,27
40,6 2,46
20,4 2,30

A) (Powder).

Paramagnetic resonance absorption was observed also at room tem-

perature in: NiBr2 (g = 2.27) [11]; NiBr2(NH3)6 (g = 2.14 and 2.16)

[12, 13]; NiC12 (g = 2.21) [11]; NiC12.6H20 [14]; NiI2(NH3 )6 (g = 2.14)

[13, 7]; Ni(C6H4 )4 (CN)8 (g = 2.20; T = 270 - 200K) [15]; Ni(NH3 )6C104

(g = 2.17) [13].

Remarks:

a) When Zn:Ni = 50, the parameters and the axes remain practically

unchanged.

b) When Zn:Ni = 4.16, D is approximately 20% larger than in the

undiluted salts at all temperatures.

c) The dependence of D and . on the hydrostatic pressure p was

investigated; . is independent of p, 6D/6p = 0.834.10-4 cm-/kg-cm-
2;

D = 0 when p = 6200 kg/cm2.

d) For one complex, the direction cosines of the axes are: Z (0.95;

0.31; 0), Y (-0.31; 0.95; 0.09). The axes of the other complex are ob-
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taned by mirror reflection.

e) One line, the width of which hardly changes with temperature.

f) The cubic field is subject to trigonal distortion.

g) The low-temperature measurements may not be accurate (see Or-

ton, J.W., Rep. progr. Phys. 22, 204, 1959). The axes Z1 and Z2 of two

ions lie in the K1OK3 plane, with the angles Z0K1 and Z20K1 equal to

±e, where the angle KiCc = *. X1 is approximately parallel to Y2, and

both axes lie in the K20K3 plane with the angle X10K2 equal to a and

the angle Y20K2 equal to 900 - a.

TABLE 4.1 (Continuation)

Cu2
+

Tutton's Salts (cr. st. 2)

I 2 3

g1o, (KpKs) g, gA

Cs.Cu (SO.), 6H.O 90 2,08 2,06 2,43 114 40 [11
±0,02 ±t 0,02 t 0,02+

91 go 93

KCu (SO4). • 6HO 290 2,31 2,07 2,25 + 105 [2j
-t 0,03 ± 0,03 ± 0,03

9z gy 98

90 2,14 2,04 2,3
-_ 0,02 :t 0,02 ± 0,V2 +,,-10i 42 [i

g, g,. (KK&) 91

Cu:Znm 290 2%05 2,25 2,28
-2 10-a-5. i-0 ±0,a3 ±0,03 ±., +5 32 0[2]

g, g*l. (KK.) A, A,=(KKa)
20 2,44 Z13 0,0103 0,04 ooI0,011 05 42 [31

-0,02 -t-0,02 ±0 0:0 -0 0 ±0,0001 ±2
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TABLE 4.1 (Continuation)

OOPUYA& T A P IN41-

Cu': Zn = 5: 10-' 77 ,47 2,08 - 0,0083 0,0045 0,001 142] a)

±t 0,05 ± 0,04

g x g y g z A , A y A , A
KCu (S0O,. 6DzO 20 g2.g.A A. A

2,16 2.04 2,42 < 0,0017+0,0061- 0,0099 +0,00110 -+105 43 (3) A.i-=,069Zn: Cu = 200 - 1000 ±.0.02 -- 0,02 ±,02 ±O, 00 t± 0,0001 ±t 0,00005 -- 0,003

Fpga

0,00013 - =1,08

g0,00006 ± 0,02KeCu (SO,), 6HO 90 2,38 2,07 2,04, +73 37 [I]
:t 0,02 ;t 0,02 t 0.02

(NH.),Cu(SO,),.HO 290 2,32 g2,09 2, 25 +7 J2,
' [(4, 491

-t-0,03 ±0,03' 0,03
g, g,,.(K'Ks) gs

90 2,45 2,12 2,06 +65 39 (1]"" 0,02 t 0,02 ± 0,029z 'max 91

Zn: Cu 50 -2000 290 2,04 2,26 2,28 + 187 32 12
-_. 0,03 -t 0,03 ± 0,03

A A,20 t12 ,05 2,46 0025 4 35 0,0130 0.0011 +65 38 131
:J- 0,02 :L 0,02 ±L 0,02 0,0005 - 0,0005 4-0.00051 ±00001

/ gg. (K,K,) g,
(NH-,)Cu(SeOj)s.6H*O 90 2,39 2,075 2,06,

± 0,02 -t 0,02 ±0,02 +72 37,5 [11

RbsCu (SO), • 6H-O 290 2,28 2,24 +105 [2)
-- 0,03 -t 0,03

g. gml. (K.K,) g,

90 2,45 2,11 2,07 +105 40 [V
.±: 0,02 ±t 0,02 ± 0,02

g, g m, (KK,) 9,
Zn:Cu-50-2000 290 2,08 2,27 2,25 +15 33 (21

-'-0,03 -0,03 : 0,03

g, g3 .1 (K1K.) A, AM,1 (Kg KI)
20 2,44 2,12 0,0116 0,0030 0,0011 + 105 42 [31 6) b

-t 0,02 ± 0,02 : 0,0005 ±- 0,0005 - 0,0001 t 2

9x gy gz A, Ay A,
RbCu (SO, ,. 6DO 20 2,15 2,04 2,43 < 0,0020 +0,0059 -0,0110 +0,0012 --+105 42 [31 6) bZn:C-=200- 1000 ±-0,02 -- 0,02 ±0,02 0,0004 ±0,0002 t0,0001 :±_2

g, go .. (K.K,) g.

T1,Cu (SO,),. 6H20 90 2,40 2,08 2,06 +112 39,5 [1)
±00021 ± 0,02 ± 0,02
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TABLE 4.3i (Continuation)

1 0opUy.a T.. K AgwlP,

Cu,13i,91 (N,1,.2110 i g A 8
4CuBi (NO,),, 24H . 90 .2,219 2,217 0,0027 0,0026 [4)

4 p. g. 3) +- 0,003 ,003 ±0,0 I, 0,000 1ca : Mg= 1 :100-- - '

gx=,=A A~ A-
20 g,0 2,454 0,00Ar 0,I 10

-t 0,003 : 0,003 k 0,0002 t 0,0002
CuLa, (NO&),, • 24HO 290 2,224 VP. CT. 3) gx o = gy 91 .c

90, 20 2,10 2,41
g~t. g.L A B [4, 51 r)d

CuaLa (NO,)1 .24DO 90 2,219 2,218 0,00290 0,00275

Cu: Mi = 1 :500 ±t 0,003 t 0,003 ±0,00005±00000514 (UP,. CT. 3) 45 --2,13.,5

±L 0,005
g 2,700 -4 ,113 [4] p= 0,0011120 2,0f? 47 0 +0010+A23 ,1 -0- 0,00005
0:0t + 0,002 - 0,0025- 0,00005 ,± 0 000 P, 0,00004

± 0,00001

CuSiF,. •6HO 290 2,20 [6]
(Up. CT. 4) g..g, 1  A B
Cu: Zn 90 2,221 2,230 0,0021 0,0028 [4] A) e

S0 0,005 .0,0O5 ±t0,0005 ±0,0005

20, 12 Ct ,Iy <,.0A3dA 0A0110
:t 0,01 1 :L 0.0I3

Cu'(BrO,), • 6H,0 90 2,21, 0,0028 [4] e) f
4 (p. cT. 5) ± 0,01 :± 0,0005

Cu: Zn = : 100
CUSo. 51Ho 290 2,08 2,27 [10, 25, 28, 39, 21) g

x g gy go 40, 41, 45]

2,08 2,46
2, 2 g,
2,264 2,236 2,086
g1 go go

77 2,264 2,233 2,083
91g go go A

Cu (NH,),SO, • H,O 290 2,054 2,104 2,181 [7, 24, 35, 36] OpTopomC.,s)h
"C41 ±t 0,003 ±t 0,006 t 0,005

2,22 2,05 [33]
±t 0,02 ± 0,02

g1 92 gs

[Cu (C*HsN),n] SO. Hs0 290 2,072 2,081 2,314 124]
± 0,004 -0,006 ±_ 0,010

ga gb ge A
Cu (NH&), (NO, 290 2,07 2,14 2,02 [7, 35, 36] OpTopoud.

1941 ;t±0,02 ±t 0,02. t 0,02

A) Orthorhombic.
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TABLE 4.1 (Continuation)

1 0OPhy"A 7. 'K I A 2numPaTya( 3 3au...I&..

g91  g 1  A B B
Cu(CH.N),(NO,),: 290 2,25 2,05 0,0199 <00014 [23] Moo-t , poU6xq., u) J

I"4l -0,02 ±1:0,02 ±t 0,0007

91 go go
ICu(CH,N).](NOa)..nHgO 290 2,056 2,124 2,161 [24]

±- 0,004 ±t 0,015 ± 0,008

6 g. gb ge A
CuCI,. 2H20 290 Ao 15 2,187 2,037 2,252 19, 45,491 Mm -=2, opTopom. x)k

S0,Q05 -t 0,005 [42 0,0051

gHx g: C
K,CuCI4* 22aO 20 2,o6 2,38 [11, 25, 45] M., -2, Trprom., -)_1

(NH,),CuCI.. 2HO 290 206 222 [II] A)1

gX g' g,
< 2,10, 2,06 > 2,30

6 g1l e± A B D
Cu (Cll4)4 (CN). 290 Ao 20 2,165 2,045 0,0208 0,0031 '[15, 16] M no 2, MOHOX.HH., U) m

I'1 ±o0,004 ±1:0,003 ±t 0,0010 - 0,0010

g, 9g g. E
Cu [C.H, (NH.) ],CI,. HO 290 2,050 2,057 2,244 1 [24] x =I iIJa 2.

11K± o,-0o4 ± 0.00 ±- 0,00 M,, = 2, 0,o,4 :r- 0.,, 10) fl

1 *opxyaa T.1KT _ D AUTCpa- 3
911 91 D

Cu (HCOO), •4Ho0 290 2,35 2,06 [26, 31] M = 2, MOHOXAHH., 0)0
IN91 gMX mtn

Cu (HCOO), •2HO 290 224 2.10 [26] Mm = 4. o) 0
1 gX gy g.

Cu (CHaCOO).• HzO D0,9 0 2,05, 2,09, 2,34, [12, 13] S'= I
[.101 ±t 0,005 ±t 0,005 ±t 0,01 D

90 2,08 2,08 2,42 0,345 0,007 M=4, Mn=2, MOHOKINH.,
± 0,03 _to,03 00 o 0,03 ± 0,005 ±o,003 [27 n) p

Cu (CHCHCOO)o • HO 290 1: 2,36, 2,11, 2,09. 0,344 0,004 ISO] S=1, TpH pa3mnqHMX mar-
±t 0,0 15 + 0,015 -t 0,015 ±t 0,007 HHTHbEX xomaIexca, F
11:2,360 2,10 2.08, 0,341 0,004 cu. § &1
-t 0,015 ± 0,015 ±L 0,015 ± 0,007

111 : 2.36 2,10,. 2.10, 0,345 0,002
± 0,015 j 0,015 ± 0015 ±0,007

2,09 -2,10 2,35 0,38 ,wo [14] S-I

Cu [(CHCO)z CH], 290 2,254 2,075 18], 132]

go j 0,001 :± 0[0,8

Cu: Pd - I :200 77 2,266, 2,055, Z051, B371 A= - 0,0160, Q M
g'l gj A B "0,0007, B--0,0195

5 Cu'+ a AgCO 290 A:2,00 2,28 0,00093 0,0090 0,0019 [51] T) t
- - 0,02 . 0,02 ±0,00093 ±t 0,0006 - 0,0005
B: 226 2,07 0,0100 0,0043 0,0021
±0,02 0,02 ±000M ±00005 ± 0005
C: 2,30 2,07 0.I011 04)044 0,0021
±-0,02 ±0.02 : O0 0 I ±0)00A ±0,000

A) Orthorhombic; B) rhombic; C) tetragonal; D) monoclinic; E) or,
F S = 1, three different magnetic complexes, see §3.11.
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TABLE 4.1 (Conclusion)

1______ 4-o___ yA&______ T___ _ K 
- IHTCPflTYPaI 3 3ml"4

_5 _ u_ __,__O 2,190 [521 -'oie XSyML eCKon A

0,0019 [¢ weTpy H

B (.opo o) 0,002 ± 0,0001

5 Cu"+ B NaCI 290 a) 2,07 [531 y) U

b 2,06

5 Cul uKCI 20 2,180 [5,1
:t 0,009

C IIIeHaroJIIOKCIU CuS+ ±x g

2,065 2,033 2,136 [54]5 o,, B, CdCl, 290 9:'':o .9-L15}€,
412 2,19 551 )

±t0,01o ±t 0,0 1
90 2,34 2,07 0,0120
20 ±0,01 -- 0,01 Lt 0,0010 Al,. - :1

Paramagnetic resonance is observed also in the following compounds at

room temperature: CuBr, (g=

=2,231171; Cu(C,0) (g= 2,12) [31]; CuCH,O. • -10 (g= 1,97) [17]; (u [C,H, (NH:),],SO .2-;O (g,,,=2,
25 ,

gmin =2,05) [361; Cu[CsH(NH,)2],(NOz), 2H 20 (g n, 2'5, gmin =2,05) [36]; Cu (CaHO,). 2H.O (g=2,09)[171

Cu (CH,N)i (NO) -H,- (g=2,04) 171; Cu[(CH3),C (CO),CHCH,,1 (-=2,04) 1171; Cu[CH.,(CH,);(CO),CHSU

2,02) 17j;Cu ( ( H,O,) , .2O g =1,97) 1171; CuF. (g 2,15) 117]; UF, basic (g=2,08) 1181; Cu (Nil 4

(CO,)* 2.o ,0 ( ( 0)=2,,+2,28,,g(100)o= 205i-, 23 , Mm 2) 129, 311; CuK,-(CO,), (g 2,1Iq3). CuNaq,(C ,O,

(.2,07) 11; Cu (NH ), Ci ,. H0 [19, 35; 61 (NH )4 SO. HO (g= 2,09'; T 300, 90, 40 K) (34, 35I  [3"]; CUS,, I191;

C-SO.- 3H2 O (3 =; 2,19) 1341; CuSO[, .5 I, I=3W; K; g = 1, ; T- 9' K; _= 2,22) 129, 34, 43. 46, 491 CuSO,.

4NS .H ,O (g 2042,19) 45,49; CUS,.H,IO l 24 =,4.0; 2 I 0) 161; GCuW6,- 2HO (g = 2,17)[171; 2CuCO,. H,O

(=g 2,07) [17]; Cu&CO,(CN),, (g=2,17; T=290--12* K)[21;

chlorophyllates of copper (T = 270, 90°K; g = 2.05 + 0.01; Mg:Cu, g =

= 2.06) [15, 44]; in silicate glass (g, = 2.32 g4, = 2.06) [ 38; persul-

fate of diorthophenantrolilnate of copper (T = 290, 90, 20°K, g, = 2.05)

[22]; copper derivative of salicylaldimin (Cu:Ni = 1:200) [47]; CuS

[20]; chlorinated and nonchlorinated tetraphenylporphin Cu2+ (g = 2.18,
ACu = 0.0250, Ac1 = 0.0120) [30].

A) Field of cubic symmetry; B) (powder); c) dimethylglyoxime Cu
3 +.

Remarks:

a) Measurements were made at v - 5.108 cps.

b) A second anomalous spectrum appears when T > 20°K; the S fac-

tors of both spectra differ by less than 1%.

c) Transition temperature from 173 to 273
0K.

d) Transition temperature from 33 to 45
0 K.

e) Transition temperature from 12 to 50
0K.

f) Transition temperature from (7 to 35
0K.

g) Each Cu2+ is surrounded by a distorted octahedron of 4H20 and

20; it can be assumed that the Cu2 + is in a tetragonal field (the
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rhombic field is very small); the angle between the tetragonal axes is

86 + 20; gmax and gmin are determined in the plane of the tetragonal

axes of the nonequivalent ions.

h) The ratio of the constant X' of the spin-orbit coupling of the

Cu2+ ion in the crystal to the constant X for the free ion is X'/X

0.55.

J) The sharply anisotropic exchange leads to lifting of the hyper-

fine structure in a direction perpendicular to the Z axes; the struc-

ture is resolved in the direction of the Z axes.

k) Each Cu2+ has a plane surrounding of two H20 and two Cl; an

elongated octahedron results from two additional more remote Cl, be-

longing to the other ions of Cu. Only one line is observed. The sub-

stance is antiferromagnetic below 4.30 K.

1) Each Cu2+ is surrounded by four Clis, forming a rhombus in the

aa plane, and two molecules of H20 on a normal to this plane. The two

rhombi of the nonequivalent ions are turned through 900 relative to

each other around the c axis - the H2 0-H2 0 line (the Y axis); thus,

the Cu is in a field of rhombic symmetry. The spectrum was measured at

wavelengths of 5.4 and 6.6 millimeters, with an exchange frequency

1.1.1010 cps.

m) Each Cu2+ is surrounded by a square made up of four N.

n) The Cu2+ is surrounded with four N; perpendicular to the N

plane, opposite the Cu, an 0 on one side (at a distance 2.68 A) and Cl

on the other (at a distance 2.89 A).

o) Each Cu2+ surrounded by four 0 and two H20, forming a dis-

torted octahedron.

p) Bimolecular cell; each Cu2+ surrounded by a distorted octahed-

ron made up of four 0, an H2 0, and a neighboring Cu2+; distance between

two neighboring Cu2 + is 2.6 A. D = 0.345 + 0.005, E = 0.007 + 0.003,
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Az = 0.008, Ax, Ay < 0.0010. See §3.11.

r) It is seen from the paramagnetic resonance spectrum that the

cell contains six magnetic complexes, each with two Cu2 +; three com-

plexes are derived from the remaining three by reflection in the ac

plane. Each complex is approximately tetragonal.

s) Each Cu2+ is surrounded by four 0 in a single plane. The hy-

perfine structure is described by the relation

K'g': Algi coas' + 8'g'L in' I+ 2$g llgln cos b

C = +0.0062 cm- 1 at T = 77 0 K and C = +0.0043 cm- 1 at T = 2900 K.

t) Type A; axial distortion of the crystalline field due to inter-

action between Cu2+ and vacancy of the positive lattice site in the

(110) direction; type B: the same, but the vacancy is in the (100) di-

rection; type C: axial distortion of the cubic-symmetry field is due

to the Jahn-Teller effect and is directed along (100). The effect is

observed only in halogenated crystals.

u) Spectra a) and b) obtained in crystals grown from a melt,

while spectrum c) is obtained from the aqueous solution.

v) There are trigonal distortions of the cubic field.

1) Formula; 2) literature; 3) remarks; 4) cr. St.; 5) in; 6) to.
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TABLE 4.2

r.7. rK 2m± 3 z,,, 1
CsTI(S0 4 0,.12HO 42-%,5 1,25 1,14 Iii

(. c 2, ) 02 0,02
KTi (CSO4). 2HO 0--20 1,86 1,06 [2J M - 2
TI [(CHCO), CHI. 290 2,00 1,03 [31 Mm =2 BI~us~mee oxpyeNUO

TX1] TA:Ai+
- ostasip M3 60; aOJaab4Oe

TI: Al =10-" nose aKCalbHOR CHUMeTpUMA 11 Po.)B
CTI (SO,), . 12H,O Z88 1,3. 14] g48KTop 322MCU OT TeMneP.

A (UPON-) 1:3, Typv, ipn tupUa i oqeb -eaNKi
N 01PSMeU*TCA SPMU@M CnN--eogo peaKIUNN

V&+

C B n OpoMe, paa6amaenHoU
&V*O (C4sh 4sO 24 901% 1986, [1] CosjvP3 umaweus csepi-

TORUKh CTPIXTYPt, o6MARKA
"V (. 6"tA-O,010+

+ 0,A0)
VOCI, 290 ,00 21

VO (C H).N, (CH), 290 2,02 12|

V O,. 2Ht 290 1,96
V0010800 1,990,

A 0,002
70 1,998,

±0,002
4 1 904

; 1 .. ,- , T I " I 2 ,-.T,,,,. 3,---

MaJ~O. "0 , [l________2

*"-75 r. K II D A fiml ,ij 3

5 v aA4 12. ~+10 0o,13 [1] H .2 102.O ., M+
2 ±t001 ±0,0I0MH6PU~~JhU

A) (Powder); b) Dv-- 2. Nearest surrounding of Ti 3 + is an octahedron

of 60; local field of axial synmetr'y. The _ factor depends on the tem-
perature, the line width is very large andis determined b lthe spin-

3 lattice relaxation time. C) A hyperfine structure, due to D1V (I - 7/2)

in observed in powder diluted with a Ti 3 + salt; D) The transition MN- 2
is observed.
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TABIB 4.2 (Continuation)

w, I .7 T.ex( A 3 ,,,

4 x Co ;Sg-n 9, Caf c to A, A sia A,

Co: Zn I: 1-0-1 20 6,0 2,50 3, 0,0288 ooo6 o.0080 [I] On,+ 3&', a

4 (NH-1,Co (So,) O.HO : 0,13 -00 ±0,0 ±,0006 ± 0,0003 0,0004(u+p. €+,I t mn As Amin A,

CO:Zn-anI:0 -1-S 20 45 ax 6 0,0245 0,0020 0,0020 [1) ++3W,,,-W
(NH,. :tC: (S &.0,13 ± t0,06 ± t0,00.0008 ±0,0001 l 0,0001

(-. Co (So,, ." 6DSO 
00

(Up. CT. 2)

Coft:co:eZn 1 :50: 10000 20 (41 0A "A

RbCo (SO,), . 6H,O 52 0.014A 12A ORc 000 6
(Up. CT. ) 92 so" go A, Amin

Co: Za 20 .6,65 2,7 833 0,023 o.o49 [3] +6.+ l5', ,,-at

COsB1(NO,)- 2 O -- 0,0003 -0,0005

(:I. 29 L A B 4 A
Co:MgmO 4 200 2 ,I :' 2,3Ua 0,0283 0,0001 L41 AnS pamuiW1 Mall-

0,01 .t 0,004 :±. 0,000 1 MNTkUt IomMU MC&

911 A B
R1: 4,108 4,385 0,0085 0,0103
-- 0,003 ± 0,003 ±: 0,0001 ±€ 0,0001

(Ce + BI)tCos(NO4) 1.. 24H0 
tt

4 0ap. -. ) 911 gi A B A
CO:Mg s1: 20 4 1:4,145 4,415 0,005 0,0103 (5J A"a pMITwMS ar-

Ce - sPI 81- 100/ :t 0.002 :- 0,002 ±t 0,0003 .- 0,0003 *UTM 61 LouGe9C
C.- tOl 4,12 4,45 0.008 0,0114:P o jo t :r- O A o I-4o P o o o :t : o0 o .

Ce 0200, 4,22 4,22 0,0090 0,0090
± 0,01 0,01 ±,000 -- 0,0009

Ce - 50/ 4,30 4,31 0,00897 0,0107
±_ 0,01 t 0,01 0,000 t ±.0,000

Ce- 80/, 4,02 4,45
±t00 1 ± 001

C- o00i/ 4,14
2.0,01

Ce-0l, BI- 1009/, 11:7,20 2,39 O.M
±0,01 ± 0,02 OA0641IMM0

Ce - 10% 2,37
±:0,01

Ge - 7,41 3
Ce ," , -0,01

Ce -50q. 10,55
Ce- 80/. 7,33 Z36

Ce 0,01 ACe- 1ore/, . 7,3 _ooA' ooo

laUCo, (NO.)w • 24HIO 4 1:4,050 4,430 0,00807 0,03033 j As, paauuz mar-
± 0,002 ±t- 0,002 O000 J ±_ 0,00030 1mu uowua10.
1I: Z23 2,8310 0,02788,0,0001
±0,01 ± " 0,002 :0,00000CoSH'..• 6HO

4. (9. CT., 4)
CO:ZnM 1: 3w- 10-6 20 5M8 3,44 0,0184 0,0047 (Ja) a

±-t0,312 ±1-0,07 ±0,0004±0,000
6,6 2,62 0,03 0C0AM

±01 : 0,08

0,2 ±,6_ __ _ _ _

A) Two different magnetic ocaplexes.
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TABLE 4.2 (Continuation)

.Y-- r. "A UYK A

38 4,09 0,01 0,01 6) b
:t 0,0 - 0,05

CoSO 4 . 7HO & &,4, A A,
4 J.CT. 4) 20 0,&02 0,0254 []3

= 0,05 j± 0,07 :t 0,014 :t O,00 " 0,0005
Co: Zn = 10-' A A As

5Co*sZflFs 20 f I& 'Il -04)4 Q2d17 0,0067 [61 mus-2. r)d
t 0,01 :t0,1 :t 0,0002

5Cos+ aNa; 8.-10"5 20 1, 31 07M 162 017126 7
eas KPNCT&a;

5 Co'+ MgO 20 -. 4S5 A
Co: Mg,= 10'--2 • |0 L- 4 4,2785! 0,00977, [8]

± 0,0001 ± 0,00002
, i A B

5 Cos+ 
B AIO, 1,6 2,316 4,8 0,00334 0,00974 [13]

= 0,005 0,01 ± 0, 0,00013

5 Co' + a CaF, 20 -. 6,6 340 0,0170 e) f
Co:CaW I", s 005 :t 0,0004

5 Co' + a CdCIs 20 3,06 4,98 0,0035 0,0170 (17] Z) g
± 0,02 ±t 0,02 0

Paramagnetic resonance observed also in: Co(C6 H4 )4 (CN)8 (T = 270-20 K,

two complexes I: g = 2.9, II: g = 2.4-1.98) (9]; (T = 290'K, g = 1.98;
T = 200 K, g = 2.90) 10]; K2 0ooS0 4 )2 .6D 2 0 (T = 200K, Co:Zn, sample con-
tained 4 mC o5 , 56/ 59 = 0.829 + 0.002; sample contained 4 mC Co58,
P 58/59 = 0.8734 + 0.0024 (11, 12, 16].

A) Centers in 0.05 c=3 of the crystal; after irradiation.

Remarks:

a) Principal line, g, corresponds to the c axis of the crystal.

b) Much weaker lines (lattice imperfections).

c) For one complex, the Z axis lies in the plane (110) with LZoc -

OR 130, the X axis in (110) with ZXOc = 1030, the Y axis is parallel to

(110) plane. The axes of the second complex are obtained by mirror re-

flection. For an undilute salt, E is anisotropic in the ab plane and

ranges from 1. 4 to 5.8.

d) Hyperfine structure due to the F nuclei is observed: N

= (32 + 1).10 cm1I, AN=(2l+5)-104 cm'1.

e) There are six types of magnetic ions with similar spectra. A

C well resolved structure due to the interaction not only with Co nuclei

but also with F nuclei, is observed. After irradiation, this spectrum
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vanishes and two isotropic lines appear, one of which is without a re-

solved structure and possibly belongs to Co2 + in a weakly distorted

cubic surrounding, while the other belongs to Co+ (see page 193). All

the irradiated centers vanish after heating to 1500C.

f) Hyperfine structure is observed, due to the interaction with

the F- nuclei, AF = 0.0030 cm"I.

g) There are trigonal distortions of the cubic field.

TABLE 4.2 (Conclusion)

flpooazeme Taa. 4.2

FeF, M=2, Mm =1, xuAtzul Fe oUpy-
. zetr mciaxehim OXTI9pOU 1s

Fe: znl- :000 0 8,97 024 meCTH F
0,05 k 0.0 [] A

20 8,97 O 3 [1, 21 Ha&auoDeHa csepxToEK& cTpyKTypa,
±002 .4 O6JIaa HaX JIa u F (OHCTaHT- OUpe-A e e ~ u p s t 7 = 1 2 " K )6

A,.' (9 -- 0.52). 0-, ', 6

5 Fel + B ZnS 2,26 3]

5 Fe"+ a MgO 8,428; 6,9 [3]

5 Fes+ a CdCl, 20 7,1 [61 B JIJNIH acuuueTpnqua

Paramagnetic resonance observed also for T = 200K in K2 Fe(S0 4 ) .6H 2 0,

(N) 2F(S04) 2.6H 2 0, FeSiP6 .6H 2 0 (4J; (C3 H4 N2 )4 Pe (T = 290, 20 K, g =

= 3.8; 2.0) (5].

A) M = 2, MM = 1, each Fe surrounded by a distorted octahedron of F.

A hyperfine structure is observed, due to the F nuclei (the con-
stants were determined at T = 120K):
B) Asymmetrical line.

1) Formula; 2) literature; 3) remarks; 4) cr. st.; 5) in; 6) cm"I.
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TABLE 4.3
Ce3+

1 *opuyaa TK e, I 'e- 1 ~ ± 2 ip TM_______

Mg,Ce, (NO,),,. 24HO
4 (Np. cT. 3)

Ce:La=I:20 4,2 0,25 1,84

±0,05 :0,02

"'Ce: La m 10-' 4,2 1,84 [2) At" = 0,0024, 8141 = 0,0126 " "0,0001

Ce (CtHSO), .HO 2 5 .1,0 2.25 3,80 40,4 [3] A ty6ser. b NH2,HZ,

4 (P. c. 9) ±-0,2 ±t0,2 ±0,04
Ce:L& -1:200 4,2 0,95 2,185 3,72 0,20 [3, 4] B~y6Ae.b a (3--) '

--01 110,01 -:-0,o0= ,s-e Ay6.%eT& a
±40,005 ±0,01I ±,1 ±,0

911 ,9L C

5 Ces+ a Cafe 20 %030 (1,396 51 M, = 3, KpHCTamalHqeCKHe
Ce & w1 ocH memnsaxllemmuz HOMOB

Ce : Ca ms 1-' ±" .:0,003 .0,002 e HM3CH HONOR

5 Ce'+ a LaCle 4,0368 0,17 [6]

Ce: Lam m2:100 -L0,0015 ±0,08

Nd3 +

* .a1 3i

1 OoPUYaA T, K jl I91 i.m- A B 23aM . .

MgaNd 1 NOs),. 24HsO4(itp =T. 4)

Nd:u- W 4,2 0,45 2,72 143 0,0052 0,0312 [i]
"0,05 ±0,02 "0,0005 ±1+0,0001

145 0,0032 0,0194
-0,0003 ±0,0001

Nd: La = 10-1 4,2 2,72 147 f,0,004 0,0237 [71
±0,0001

Nd (C.HSO4), • 9HO 20 , 2,072 143 0,03803 0,01989 121 MrA

(Up. cT. 9) :0:001 ±0,001 -0,00001 -,0,0005 WA ,S0

Nd: La = 1: 200 145 0,02364 0,01237 10,0012

A, A4oo0 D
Nd (NO,), 61 0 20-1 0 &=l4 . 148 0,&'32 0,42 [6] An 06oNX M0To0o
Nd: La --m :20 0 A±0,01 ±0,0002 L0,0010

A

A .O 9 P .- P , -00 4B

A

0,069g

5 Nds+ a WeaP 20 4,412 1,301 a)
Nd: Cm0-= 0,008 ±'.0,002
5 N*aWe20 4,M8 1,50
Nd: Sr =0 10-2 - -:LOAM

A) Doublet b is the lower one; B) doublet b is (3+1) m-' higher than

doublet a; 1) Mm  -3, crystalline axis of iionequivalent ions directed

along the edges of a cube; D) for both isotopes.
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TABLE 4.3 (Continuation)

1*OPVYAa ell 91 KLHeOM~ A B i OS 3 aa.uuu

5 Nd+ a LaCI, 4 1,783 143 0,0425 0,0167 181 r"P< 1 10"
Nd: La - 2: 10' 10,001 0002 00001 1,0-, 1• ~14,5 0,0264 0.0104 p<1•0-

--0,0002 ±0,0001

Paramagnetic resonance observed also in Nd2 (S0 4 ) 3 (T = 90'K) (3];
Nd2 (S04 )3.8H20 (T = 90'K) [3]; Nd203 (T = 290°K, g = 3.2) [4].

Remarks. a) Mm = 3. There is an axial electric field near each
ion; the crystalline axes of the nonequivalent ions are the axes of a
cube.

Sm3

*OPMy" I lr.i -K el tL Ils~n A B bP~1 3aauumuu

Mg.Sm,(NO,),, • 24H,O 4,2 0,76 0,40 147 0,0346 <0,010 [1]
(p. CT. 3) :0,01 -0,05 -,-0,0005

149 0,0287 <0,010
--0,0005

Sm (C-HlSO,) • OH. 4,2 0,506 0,604 147 0,0060 0,0251 [2] P < 0,0004
(,p. CT. 9) -0,002 ±0,002 -L0,0001 ::0,0001

g47ASm: La = 10-" 149 0,0049 0,0205 --. m 1,222
±0,0001 "-0,00015 s+ n,1.. 4 0O,541 0,8127 147 0,00607 0,0245 [4 .- o0oo

Sm:Lam1:50 r0.0003 0,0006 -0,00002 ±0,0001
140 0,00499 0.0202

Paramanetic resonance observed also in Sm in SrS (T = 77-20°K) and in
Sm in SrS.SrSe (3].

Dy+ __ _ _

1 1ouy T1J- jOt"I Ax _ __33@uwqmu

Dy (CHCOO) • 4HO 4,2 134' 161 0,0.381 [1j
-,-oo6 ±0,0005

Dy: Y = 1: 150 163 0,0540 a)
' :t±0,0005

I, tA B
DypMg. (NO.),,. 24Hs1.6 4231 is2 361 01161 0,2463 (23.. "P. 0,0042

:. 0,00010
Dy:Lam --2 10- ±0,006 ±0,160 ±0,00007 -0,00015 '"P--0,00168

-± 0,00010
163 0,0162 0,0348 1,18

t0,00007 -0,00015 0,13

Remark. a) Mm = 1, triclinic crystal. All principal values of theg
factor are different; the direction of the magnetic field corresponds
to the maximum value of the . factor.
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TABLE 4.3 (Continuation) Er3+

1 *OPuYAa 9.1c A 5 JYPS- 3 3aummsa

Er fr!1ISO,8 911,0 4 1,47 V ,5 003 ,34 [] P-0OOO0.00031:200 -:0,03 :t0, 0,0001±001

5 Ers+ s2., 20, 14 179

7,76 6.%, 0.0261 0,0219±0,02 ±0,006 ±t0,0003 ±0,0003 6) b
6,76 9,11

"±0,02 ±t0.01rgMga (NOa),=4 24H20 4,2 4,21 7,990 0,0142 0,0274 [83 Po 0,0;13±0,01 ±0,010 ±0,0001 ±0,00015 Er,+ 9 LaGC1 1,989 8,757 0,00664 [4) P 0,0008Er:La =5 • 10- ±0,001 -0,002 ±0O,O3DM

Remarks:
a) Iotropic line.
b Line from ground-state doublet.
c Line from excited doublet.

~yb3+

1 *OPMYS& '. -K 1. oa A, ANTeaTYPa 31aU."431u1

Yb (CHCOO). 4HO 4,2 4,57 171 0,122 [i a-±0,02 -0,001

Remark. a) Km = 1, triclinic crystal; all principal bodies of the

factor different; direction of magnetic field corresponds to maximum, value of S factor.

i) Formula; la) isotope; 2) literature; 3) remarks; 4) or. at.; 5) in.
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TABLE 4.4 pr3+

-0MA -r_ A ~ na 3

MgPr, (NO&),., 24HO 4.2 1,55 07 [1]
4 (,p. CT. 3) -0,02 ±0002

Pr : La = I0-'

Pr(CHSO,), . 9H,0 20 1,69 <0,03 -. 0,19 0,083 [2, 3]

t (Np. CT. 9) :0,01 ±0,001
A 6

Pr:La am I :200 ..... 0,11 0,0755 15, 7, 3] V. = 50 e.r', V, -100 m-',
Pr:±Y -0,02 ±0.04 -0,0020 V = -48 c1, V1 =660 c.U-

' A
PrC,. 7HO 4 3,02 2,23 [31 M,, = 2, TpHa ft.l upHCTSZ

PrCI, 4,2 1,791 3,975 [41 B Ha6ioxaacb 1 manis

Pr: La = 0,11

PrCI, 4 1,035 0,10 0,0502 181[I
Pr: La = 1 :50 --0,005 ±L0,15 ±0,0003

5 Pr+ , LAIO, 4,2 2,67 0,119 [a]
Pr: La - J0-8 :002 -,003 ' C Kpctazz Tuna nepOBCKUTa

A) Mm = 2, triclinic crystal; B) one line observed; C) crystal of per-

ovsklte type.

Tb3
+

Tb (CHSO,)* • 9HO 20 17,72 <0,3 0,387 0,209 [1, 41 V1= (M0 :30) cx",
(9p. CT. 9) +_0,02 ±0,001 "0,002 1 1=37 cr'

Tb: Y = 10-  A,
Th (NO,), 6H,O 13 g.,y< 1 150 0,210 0,212 (2]

Tb: La = 10-' 0-.,4 ±0-.007 ±_0,005 A
Th' a CaP, 20-10 17,8 0,173 0,209 151 Ha6.uAacbCTCoiF+,qucao

Tb: Ca = 10r 4  -0,1 ±0,0 01 ,OMInIUeT ,T'an, pacc"oMX
To.+. LaQ 4 1Z78 <, 0,2010 0,2120 [

Th:1Am*Ia.0"-- 2 • 10 I01:0.01 ±000M

paramagnetic resonance observed also in Th3 +  in SrS (T = 290°K) [3].
A) Hyperfine structure due to F+ observed, number of components even,
distances between components on the order of 5 oersted.

t
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TABLE 4.4 (Continued)

Ho3
+

H o C ,HSO,) H9 IO 18 15.410 0[2

H±0,010 o, o o :00O,1A0

7905 0,03 121 D-(-,-0,2) u-'

Hol+ a LaCI& O
Ho: Le - 10- 16.00 0,350 31

±,08 ±t0,0070

Remark. a) A detailed investigation has shown that the best explanation
ot the experimental data can be obtained by ascribing S = 1 to the
ground level.

1) Formula; 2) literature; 3) remarks; 4) or. st.; 5) in; 6) cm- .

TABLE 4.5

___ __ ___ ' I -I I I
10oPUYaa 1

T.'K i I D £aA 3 3aam.

(NH4, Mn (SO,. 6HO 200 00231 0,006 0,0003 0,0090 [1] +m .0, a.- 0"4 (,p. ±. -,-0,0002 :0,0002
-Mn:Mg1:250 290 0,0220 0.004, .0,0095 !21 +-+5 =, a80

Mn: Z 200 2000 0,0238 0,007, 0,0005 0,0091 (3

Mn: Za M10" 230 -0,0243 0,010 +0,0005 -0,0091, 141 ,+-+W,.-.3
M .0,o06 ±0,002 ±0,00i ±0,0001
195 -- 0,0258 0,008 +0,0007 -0,0089,-,0,0006 ± ,0,001 ±,00001 ±00002

#0 +,075 0,007 +0,0007 -0.0089.
±0,0006 0,00O ±0,001 :-:0,0001

20 +00277 0,006 +0,0008 -0093
±0,o006 ±0O,01 ±0,0002

eMuD.(.q1 . 24Ho 90 1:1,99 -0,021 0 +0,0008 -0,0090 131 A5A Paam,.=.
r . ±0,02 ±0,0001 :0,0001 aUwMUZ Rome-

Ml: Mg = 1:200 20 1,997 -0,0215 0 t0,0008 -0,0090 aIIca
±0,003 ±0,0001 ±0001

90 11:1,99 -0,006 0 +0,0010 -O,OOo
:0,02 :to00 :t00001

20 1907 -0,000 0 +0,001 -,009

MnSIF. 6H 0 *0.0 00001 ±00
4 (up. C,. 4)

Ma:Mg-- 1:20- 1: 0290 --,0274 O0MO* +0,0007 -0 [6,9 11Mn: Zn 0 2A0 0,0171 0 0,0007. 0,00 13
Ma: ZIAl M I"0 -0,0179 0 +,M0 -40M1 [41
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TABLE 4.5 (Continuation)

195 -0,0161 0 +00010 -0.000
±0,000.3 ±0.0002

90 2,000 -0,0141 0 +001 -. 009
±10,001 ±0.000 ±0002

20 -00134 0 +0.000 -0,0001
MnSO, -7HO 290 Z,000 ,040 -4 0,008 [3) a

(.cP. CT. 6) J-10
Mn:Mg±,0
MnCO& 290 2,002 0,0075 0 0.0078 [71 P. 0,0058, 3) C

Mn : C2a= 1:2000
Mnl4  ZnS 290 2,001Q -0,0105 -0,0065 [3.3] m, 2,

±oOooA0 - -0,0007.
6 re~mcaroml

hinl+ U S 290, 90, Z0025 0 -,0078 I -0,0037 [34, 35, Ky6uq. 120
-64 .0,0002 ±0,0000 ±010000I 88, 53]

Mn" B ZnF. 290 2,002 -0,0186 -0,0041 -0,0096 1211 A6 -2, 6) b
Mn: Zn = 5 - 10-4 ±0,005 ±0,0008 ±0.000 ±-0,0003

Mn (HCOO). 2H,0 290 1,999 0,48M 00l 0,00096 0,0091 [10] r) d
Mn: Zn ±0,0016 ±0,000 ±010001

Mn (CH&COO)s - 31-10 290 0,023 0,002. 0,x"8 [3% 111 it) e
Mn: Zn

Mn (CHsCOO)s - 4H-1, 290 2,00 0,012 0,006. 0,000 0,0087 []e) f'

6 Mns= B Na0 29 2,01 OP [521
Mn'+: Na 1=0'2-4-10' ±0,0005 ±:LOAM

7(Ua ipii mMNhom oxiam- 290 2,004 140] Z)g
AeHNH H3 PaCnAaua)

0 (N3 pacnaam flpH 6WCT- 290 2,015
p03 OXA~i2ERCHH)

11 _2,UY20 a
(33 DBOAHoro paCTBopa) 290 -- 0,005 3

(,a OAHoro pacnopa) 9 ,1
.L (a oAHoro pacisopa) 290 2,0012 0,01285 0,00479 -0,00827 147) n) 0

-f0,0008 ±0,00010 ±0,0000 i±o~ooo
Mn'4 0,001-0,02%/ 290 2Z010 (28i 29] a) h

12 no smecy ±10,005

6 ±tO;00* : H) IIMn'4 B KC1 290 2,0041 oA00ss 0
Mn' 4 10- 0- 290, 80 2,002 1291

13 (N3 pacnmianm)
Mal+ s KC1, KBr, K! 290 2,0047 0,00887 [2811A (3 ?aTSOP) so52'

Mal+ 0,001-0,02%/ -#-,0043 tO,OO8 82  9

"~no aecy±000
19 Mn' 4 . N aF 90 1:1,996 1:0,0089 1:0,0091 1201 it)

4.- 10' Mn'+ ±-0,006 ±0,000 ±0,0004
15 a 0,05 CJAI KpHCTaI~a H1:2,00 11:0,V2Z 11: 0,0092

± :0,0 I tp ±0,00 ±,0004
001Mn"+ s Mz0 12 290 2,0015 .f0.00186 -000812 122,23,29]

0,0-0110 iMlno mecy 70, 4 ±t0,0001 ±0,0000 ±to~oo
6 Mn 4 uCaF, 290 ,0013 0,00954 123]

0,Wl,-0,5'/. Mn'4  ±+0,001 ±0,00001
12 no secy 4 2,0012 0,00945

±0,001 ±0.0000 1[231
Mn :(AWS104 00 1,99 +0,00006 -0,00978 [48] N) m

1 ~ (H3 PSCUaamj ±0,003 ±0,O00004 ±0,00010
Mn,0018 7 OO -,02169 -000020 -,0076 [401 9 rescarou.

Mn: Zn - 10-6 ±0,000 ±0,0002 ±0.0000 ±0,006 MOB a US 30 2,02+,06 -0.0=14 -0063 (46 9 reamm., o)fl
MU: cd = 10-4 :0,o0= ±0000±.005 0000
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TABLE 4~.5 (Continuation)

1 *OU& F.F7

Mn'4 a Az~1 290 1:2,0061:,0! 18 k
Mn: Ag = 10-4- 10-a ±0,003 ±0,0004

290 11:2,000

13 H3 acniaaa) +0,00 0,0077 1181
MR: AgmiF~0 ±r0010 ±0,0004

On+Csx~e 77 2,0061 +0008 -0,00425 f19]

MnCI (nopoulok 2 2 0 zo AmA..,97 (2
Mn:Sr =l:100l,7
Mnl+ a 0o41oPaI 17 9

0.1...0 p sk 01,0000m
Mg?, 2,004 0,00922 [371

Mg I., 4 gO S-t. g .A-O ,00450098 17
CO1AP 2,006

coo 2,002
±t0,0025 W7

ZgI0,MOA.O.kMO-0 2,004 0,00856 [371

Z1S 0,0 05 0,00607 [37210
US 2 ,001

MnS 290 2,0024 0~ t,0025006 S 7 ~ ia.
16~Z0 (0,00ux)±0408

Mn Zn 1- - 160 292001 ,06

13 S 2cnlama) 0044

Mn:Sr 10-±O A0,00102,0011
Mn'SSS 290 2,002 X A 8 1S.531 9m TunaCQNepa

16 (nopomoac) A,,086:4,0004KCNOT

Mn 4  = C1-C- 0- 29090 2,0 0.01 0,0065 [6 proawo c

Mn' 4 B LICI 29 2.073 10,0076(0 1 191 2
13 (H3 pacnaasa) :L0,001 ±A0,007 15

18 + flapH M nAu a SI 20 2A=0,00910 45 1 9 =,00,p

162011Z,(0) gu20 ~,M? ku2O1 A0,00906) [ElCl' g,0,A=0,00 906 (50;mo Sr?,KNC

'"l+au0003 (501; 29%9, 2004 0,0091 (50 d g-,002 Jae087) T50;mgsug-20me-

- n' 5aS~u2O UTI Z003 0,00,A 007[71 noSxxf 2=007
13 ,K pa am 0,0729 :t501 :t-A0067J[ 0,0009551; de( 2

1 ap-0, n:I5) (51 Sdi (g2,01,A0008)5 Zne( 20 A 0 0060 [511 (Am0 O x P)

6tmama u nl+ oeAuueuun (g 2B 0 A &( 0 207) 1 MInB 12,0,0 A Mn 0,008 12H,0072) [130 ; Mu~ ow(,0[
.311,0 (141; 2n(19 ; (CNOW, 2,,0,(9);208In[ - BeM -(Cas g sw 2,0).f2;07n,

COO),O 2,I0) 4H,0Z~ f , 11 ,
MnC, ~=00[I2 34241 MnO .110 -0~;, (~501 WeC (92,01,A=0,00) 1;W

ow 02,0,09)[2 1; , 26, ( I 0 4 2, 1 -%P , 14 421 Mm F'.O.a %004,M~,(0).o ;n(

*OH,0 [241; Mn 06110 r2,4)M. (gn ,) Cd2)Mm, -2,00 (A, 1 7 4& 4 MgSg ,0.A
A* ,00)J rl~J~c .(-A2 I150r

0,0 ~~~~~~~ 162,zm)10] r 00 - Oi) 0 j 0r2 A-0072 51



In addition, the absorption lines of Mn2+ were investigated in

paramagnetic Tutton's salts R(NH4 )2(SO4 )2 .6H20 (R = Ni
2+, Co2+, Fe2+,

Su2+), and also in CuSO4.5H20 [44]). The intermetallic compound MnAu2

was investigated (polycrystal); when T > 900C we have g = 2.0; below

900C, MnAu2 is an antiferromagnet [43]. Finally, the paramagnetic

resonance was measured for Mn + in amorphous phthalooyanine (g = 2.0)

[41).

Remarks:

a) The direction cosines of the Z axis are (0.282, +0.952, 0.122).

b) The Zn is surrounded in ZnF2 by a distorted octahedron made up

of six F ions, four of which (type I) form a rectangle with sides 2.59

and 3.13 A, and the two other F ions (type II) lie on a perpendicular

to the plane of the rectangle at a distance 2.04 A. The Z axis is
chosen along the long side of the rectangle (c axis), the X axis passes

through the type II F ions and is parallel to the short side of the

rectangle. The following hyperfine structure due to the F nuclei was

observed:

A; = (16.5 + 0.7)-10 " cm- I $ A; = (14.6 + 1.2)'10- 4 cm-

Az = (18.2 + 0.2).10-4 cm- , A,, = (12.5 + 0.2).10-4 cm-1 .

c) CaCO3 - calcite, M = 2. The nearest neighbors of the Ca are

six 0 with trigonal symmetry. The magnetic complexes with Mn are equi-

valent. The structure of the crystal is hexagonal.

d) Mm = 2, * = +970, a = 620, monoclinic structure.

e) Mm = 1, Z c, X a b, monoclinic structure.

f) Mm = 2, * = +47', a = 290.

g) If a sample obtained from the melt is heated and soaked for a

certain time at a temperature T, and then cooled rapidly to room tem-

£ perature, then: 1)'if T < 30000, the resotant curves do not change; 2)

if T > 500°C, then curve I goes over into II. A superposition of curves
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I and II is observed at intermediate temperatures. There are probably

two different states of Mn2 + in NaCl, one of which is stable above

I5000C, and the other stable below. The former is contained in the
rapidly cooled samples and the latter in the slowly cooled ones.

h) Lines without structure.

J) Line with hyperfine structure of Mn
55.

k) There are two types of centers, each containing three nonequiv-

alent magnetic ions. Because of the complexity of the spectrum, the

values of D, E, and A are determined only along the axis of the crys-

talline field. The intensity of the second spectrum is one hundredth

of that of the first. Each of the hyperfine structure lines of Mn has

a resolved structure, due to the interaction with the F nuclei. The

constants of this interaction are: A s 13 = .00144 + 0.00003, A p =

= 0.00028 + 0.00007. The intensity of the Mn2 + spectrum is greatly

weakened after irradiation.

1) Spectrum I of six peaks corresponds to isolated Mn2+ ions.

Spectrum II having one peak is observed only in samples with higher

concentration of Mn2+, and is probably brought about by the aggrega-

tion of the Mn2+ ions.

m) P 53/p55 = 1.455 + 0.002.

n) a = (+0.6 + 0.4).10-4 cm- l , As = (9.5 + 0.3)'10- 4 cm, PA =

= (2.7 + 0.5).10-" cm-. A. and A are the constants of the hyperfine

structure due to the interaction between the spin of the F nucleus

with the s and p. orbitals, respectively.

o) In addition to the ordinary hyperfine structure, a hyperfine

structure was also observed due to the magnetic interaction between

the Mn2+ electrons with the nearest Cd nuclei.

C)0 p) The spectrum is due to the complex made up by Mn2+ and the Na+

vacancy; the Z axis is directed along the bond between Mn2+ and the
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Na+ vacancy, and the Z axis is parallel to the cubic axis. The com-

plexes are unstable.

r) At 20'K each Mn2+ line is split by the interaction with the Au

nuclei; it is suggested that the quadrupole interaction with Au is

stronger than the magnetic interaction.

TABLE 4.5 (Continuation)

Fe3+

1 _ _ _YA_ ". ' D L _ 2 pa 3 ae.a.u.

KFe (SeO,), • 12H,O 90 .003 -0,0103 -0,0127 -0,0002 [1 -Tami(1O0.
(Up. CT. ,) ±0,003 -0o,0001 ±0,o0o2 --000

Al: Fe 1:300 20 2,003 -0,0115 -0,0127 -- 0,002
±,000 -0,0001 -±00001 I0-.001

RiH.CH) Fe (SO,).. 12HO 90 (-)0,188 (-)0,010
(Up. CT. I) -4-0,014 ±0,004

Fe: Al =1:200
NH,4Fe (SO,) • 12HsO 4 0,016 (-)0,0128 [23J

Fe: AI= 1:80 -,-0,001 ±-0,0004
4, RbFe (SO,). 121,O 90 2,003 0,0022 -0,0134 -0,0003 [1) (,,5)

. (Up. CT. I) :0003 :0,0002 0,0002 -000O 2

Fe: Al-1:300 20 2,003 +0,0031 -0,0134 -00
-0,001 o0ol001 ±0A0 .0 0I

e's s Al Be$ (SlOs)6 290 2,00 0,01658 0,01445 (151 I ,-058 C.v",

Fes+ m MgO 290 2,0037 +0,0205 [161±0:,007

Pe + a SrTIOs 290 2,004 0 0,0198 [1, 17] 6) b
Peg

+ : Tiff sn 10- :LO,1OQI ±0,0010
77 0,007 00223

-,-00003 :o0,001
Fes+ D Si 10 20. -=3, a (19, 21] A",=70.0-,c--.

S(~o ast. n so~ore.) r)

PC I(C.lsCO). CHI, 290 0,07 [101 3) c
0 : Co m 10-

Pe's D MgWO. 71 20 -0,687 [23] E-+ 0,174 "r', i) e

Fe"4 a AIAO 20 2,008 -10,1679 0,0241 40,02 112,221 a)
Fe: Alms 10S :0-1 *OAK 0 4 001
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TABLE 4.5 (Continuation)

77 2,003 +0,171i 0,026 +0,033
:0,001 ±0,0001 ±0,0004 ±0o0002

4.2 2,003 0,79 0,0224 +.0A33
e0+ a BaTiO, 290 2; 0,001 0,0004 ±20

Fe : T i t 00,-- 4 0 ,0- 4

24 flapamar.THMgA peaoHaHC Ha6oJoeR TaKZe npit KOUHaTHOR TemnepaType s Fe[CH,CF,(CO), CH], (Fe:Al) [10];
F e (CQHO,), (g . 1,95) [4]; Fe (CH,0,), [51; Fe (Ci1H.COO), (g - 2,00) [6]; FeCI (CsH4). (CN)o (T = 270 - 20 K, g = 3,8;
2,0) [7]; FeC!, [5]; FeF& . 4.5. H,O [13]; FeK (SO 4),. 12HsO (Fe: Al== 1 :385, b=0,03 ea-1) [ 14]; FeNH4 (SO,), , 12HO
(g=2, 1-0,032 ea'-) [14]; Fe(NH)(SO,),. 12HO (g= 1,97) [13]; Fe(NH.).(CH.O,)*. 24H.0 ((9 -98) [4];
Fe. [Fe (CN)J, [5]; FeOH (CeHiO.), (5); FePO, . 4HO [5]; (Fe Fs) . 9HO (g 2,02) [4]; Fes (SO,) 3HKO (gew 2,01) [8;,
Fe.(C,O, [5]; Fe, (SO,),. 9He0 (gsw2,01) [4]; Fe (CH&COO) (OH), NO, 6H.0 (T 15" K, g-2,0) [9];
Fes [CoH, (OH)OPO,], [5]; Fel + o 3YO, . 50aO, [24].

Remarks:
a) Mm = 2, nonequivalence due to the difference in the directions

of the cubic-field axes.
b) Below the phase-transition point (near 100°K) the single crys-

tal consists of tetragonal domains.
c) Mm = 2, the crystal is orthorhombic. Upon dilution of the

aluminum, a similar but not identical spectrum was obtained. Thus, the

crystalline field acting on the Fe3 + may vary from diluent to diluent.
d) Isotropic line.
e The Y axis is parlel to the b axis, the Z axis lies in the

ac plane and forms a 41..5 angle witl-the a axis. The signs of D and
rare determined from a comparison of the iitensities at 2 and 40K.

o3+

Mg0Od (NO,),,.24HO 290,77 1,991 [151 1'A - (3,7±-0,3) X
4. ,Xp. CT. 3) X 10-4 ca',-

Od: Bi =i: 5000 "'A,4Os1)X

Gd:Bi= 10- ' 00,20 1,992 0,0124 +0,00009 -- 0,00006 +0,0012 [1]
±0o,003 ±:0,0001 -0,00001 ±t0,00001 ±t0,0001

Od (CHSO)t 90HO 90 1,990 0,0204, -0,00039, +0,00006 +0,0003
- . ( .C T9) Ij 0 : 0 02 0 ,0002 ±0 ,00003 t 0 ,0000 1 ± 0 ,0 0 0 0 2

Od: La-: 200 20 9 -0,0199s -0,000.391 +40 , 0,00
Ode CSO5)4 - silo0 ±0,02 ±t0,0001 ±0,000015 ±000060,00

Od:Sm-1:200 300 (+)0,0633 (+),03S (-)0,0013 [12] a), 6)
:0,0005 t0oA5 :1-0,0003. [3

Od CI, 290 1,991 +0000836 +,o00168 +0,0=Mo4 [7] 8)
1,,,1 ±0,001 :±,O0MX10 :r0.0004 ±0-o001

0d: (La, Ce)-M 10- 90 1,991 .40010 -4-00002i +0,000 [7] r)

-"00I A &-02) X
X10"2 eJ1' [
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TABLE 4.5 (Continuation)HI H H *1nb 3 ____

09-77 n-10 0 -0.0115 750,07
OdCI, 7DO 290 1,99 ,07030 ±0O007

ad:La,-2.10-4 " [35] 'A- 101) X
X 104 9r.OrI X,

Gd'+ 3 lUP. go 1,990 +-OO3 -0,000 058 -00004 [221 0)
Od: La= 10- +0,1001 ±00 ±0,0002 ±000002 ±0,00

*"y&T. -K A &ff A) JIUIOTMp a~a

Od •.ThO, 290 1,9913 0,1755 [16] =(219,9 ± 0,3) • 10-' CA -,
Od: Th " --0,0005 ±0,0003 d = (1,0 _ 0,3) • 10" ex-',

90 1,991 0,1796 [16] c - (22S,0 _ 0,8) • 10- CM-',
:0,001 :--0,0008 dm,(1,7-0,8). 10-' c.a"', M.-3,

Was 0,744 ± 0,007

Gd" a CaP, 290, 4 1,9918 0,1491 [8,9, 10, 14] M,=3
' "t-,0010 "+0,0008 25raaBUaC oCH TeTparonaJbHoro nona napas-

go ..2,1 [20] MeablIM pc6pam xy6a, a -+-0,0175

26 napamuarmirft pe30HAHC Na6WRAJiCU Tale Ha: Gd' B LaAIOs (Tam4,2; 295; 195; 83' K, AHHHN 6e3 CTpYKTYPM
c gI 192_ 0,002, MeMCb 331o TONKOlk cpyKyp c Z 5m 1,55 - 2,7) 118]; Gd (NO,.. 6HO (Gd : La m 10-1) [41;
OdCh.,61iso [6l; ad(BrO,),. 9HO [5, Gd' a SrS (T 29WK, Od: St,,,10-4, .U- 0,73:1-0,03) [11, 17].

Remarks:

a) The value of bo may not be exact (see Bowers, K.D., Owen, J.,

Rep. Progr. Phys. 18, 304, 1955).
b) Monoclinic. M = 8, M = 2. The axes are specified by the angles

*z = 280, az = ±35o 1*y = 0°, ay = +52o, where *, is the angle between

c and the plane containing the Z axes; ai is the angle between the i-th
axis and the ac plane (i = z, y).

c) Hexagon. The crystalline field on Gd has a C3h symmetry.
d) The sign of the coefficients bm is determined from measurements

of the relative intensities in parallel fields at 200K.
e) AE = 8c - 2d is the total splitting in the cubic field.
f) = 3, the ion is acted upon by a rhombic crystalline field;

b = 60B o+0.0027 ± 0.0003; b4 = 6B 4 = -o.oo3 + 0.0003; b+ b6
= 6 =+.005 4 4 ~b126o(Bg + BV) +0.oo08 ± 0.00030; b6 126oB6  --.0001 +00005.
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TABLE 4.5 (Continuation)
Eu 2

+

1 09y T.'KI 9 AB HOTI A *"uepaMp 33aeu.
28

Bus+ a Cap. 290 1,971 151 0,00346 [41 MarHTHUe UomeTH MEu II

±0,001 ±§,000l ."EU rIMelT OAHuauOSIM.A SiHaK
153 0,00154

±0,00001
290 1,9927 0,1784 151 0,00303 [Z 3,5,6,91 R-0,612-0,003

-0,0010 :O: -0,00001 past
153 0,00151 Pl

. +0,00001

(ecTec a e .) 290 1,993 :021.1 4J
us panaaa..) 90 1,98 0,1810 151 0,00345 1
u ,:4Ca tO.002 -±0,000 _0,00002 6--.0I86 eAr'

153 0,001M3 0.(5 ), ± W. I0W &ir"
±0,00004 &o0,2). 1"- W1,EUM*I St 29O 0 ,0MW' 151 0,00322 [1]

d±w :1:o.oooo3
153 0,00144_+.0,00003

16 ' EEuu'S 200 1,02 151 0,00:00 11, 4 1 l :M) : :' 0 €0,001 -4L0,00001
EN:S '.1- 153 0,00134 past

' ' :tO.O00 -2.U : 0.03

1,52 0.001 :
90-2D zo 0,1- -0,00001 89

en*+ s SrS -SrSe 0-2 zO 018 [81

30 naaammAPe3OHAHC H&68*RCH T$z AES C I ,08- 00,-T=,7: A

104e ".14A=( If5,67 0,06) -10- CAC) 191.
:ai:00-0 ±0,08 ±,00 ,00

~Cm3+

Cm' + s.LaCI, 290, 77 1,9914 0,00076 [1, 21 (i-5,) 000'14

MggCm.jNOj 1 .24HgO 290 2.00 0,00020 [11 bt -F0,99M2

±m a, 20 ,00 0 ,000002 ,-0,00005

31 1Iapsuaruu pesomC ma6amaaas nuse s CaM a 11.0, x CiC. I

1) Formula; 2) reference; 3) remarks; 4) cr. st.; 5) two different mag-

netic complexes; 6) in; 7) (slow cooling from melt); 8) (fast cooling

from melt); 9) hexagonal; 10) cubic; 11) (from aqueous solution); 12)

by weight; 13) (from melt); 14) (from solution); 15) in 0.05 cm3 of the

crystal; 16) (powder); 17) in phosphors; 18) Mn-Au pairs in Si; 19) two

spectrum types, apparently depending on the S or Se surrounding; 20)

trigonal distortion of cubic field; 21) paramagnetic resonance observed

also at room temperature in: a) phosphorus containing small concentra-

tions of ..... ; 22) b) undiluted compounds: ..... ; 23) (enriched and
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not enriched); 24) paramagnetic resonance observed also at room tem-
perature in ..... ; 25) the principal axes of the tetragonal field arer parallel to the edges of the cube, a = +0.0175; 26) paramagnetic reso-

nance is observed also in Gd3 + in LaAlO3 (T = 4.2, 295, 195, 830 K,
lines without structure with g = 1.992 + 0.002, six fine-structure max-
ima with g = 1.55 ..... ; 27) isotope; 28) the magnetic moments of l5Eu
and 1 5 3 Eu have the same sign; 29) (natural); 30) paramagnetic resonance
was also observed in Eu2+ in KCI.....; 31) paramagnetic resonance ob-
served also in Cm3 + in ThO2 and aC 2 1].

TABLE 4.6

1 *opuya . " £ I 3 3a..,...

K. WFe (CN)a 20 [I e4(UP. ai. 1) t-i ,8 9 0,94 Lapamauxouume KomHyCM oce*
±-0,03 ±o,03 ±L0.03 a b c2': - 1- 0 2.3 2.10 0 ,916 12] z 0 0 1
*0o0 1-0,02 :-0.0oi X ±0386 0o500 0

Fe... 8 uOOpCia .oro 20 6.oo 0 i A or' o6UHSl, n10.yMCHllOrO H13 KIHTO- :00 LA
bon MMMUM

CiFe (CHl), (CN), 290-20 8U8 ] 15 -

8 Fel: a u3Ae 4ieppmr"oftma 290, 2[ I f 14-61 Ocb Z nepnemNXYaNP"S K
it 4ieppHremor~o6mHa nlOcKocTK em9 a nepAe 6ypd 77 4 [7] Pacclonuue ueAY Buuzau*

10 a nOANKpuCTSaiN'4eCKO 151 €Ti-Hua CpIfat,, pM.
remme . .anu0 "" 16 " g11 a KlICIUN Nenaepprei Ni •xcoM .eaeppruu/
1 orn6 me 112 a KNcAou e=aeppn mo- 

13

14 a *T:opue OeMNum aO.

K. IMn(CN)G. 3HgO 12 624 182 0.72 II1 )
±op. a. 0:0 0.o l ±,0,05 Z O,295 -O, -0A2Mn:'e- 'I XOM4 ±0,106 -0,405

A A A YOo4b0 *0OAS -4M80
:±-o1o16 0006 1oooia
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TABLE 4~.6 (Continuation)

MV, MIII, cT
1 *opHYa T.'K got A jBI jb-'1' 3U

18 -OV B 11nC 3arpw . 20 OXW [I] iog o4~ B CAHH~qHoA aqehe Ala11 uarew-
utHHN a K, [InCI.J x ±L0,005 ±0,008 ±0,0002 ±0.000 No HewssaxlIfTHMS KO~n~eKCA;
X 2IIsO 11: 1950 19109 0,0077 0,90 ua6alozeHa CcepXOHKaE CT&YNX"

Mo: In = 102 ±o1,oo4 ±0,006 ±0.0002 ±0,000 oduSHIarna sApaMC19 Ka [Mo (CN),I 290, 20 . 2,005[219 Wpowol) (2100
g A 2

Ka IMOCIa) - 21.0 90,20 1:1,93 D>1 0,603 21~~qo xet lc,011K

Mo"IIInm20 ±0,06 ±0:t,0005 UaflWHlo NewellaINT111101 Rom.
0 nm1 0 U0, fes;w uampeu WOMKO A"8

11: 1,93 D>1 0,003
±0O,06. E ±0.000

19K,MOC1, 290 1,76 (21
(nopoMoic)

19 KsMoCI,.- H,0 2W0-20 1,96 I
19 0F. 14 1,95 13119PtC11,80 Amax Amin

TC4*a KPt~, 42 1QM10,013781 0,013341 11)

TC. -2. 10-4 0004±.00

Ru"

1 tyn T.1 * a A I,-gy s A-. A.* A- 3aaus-amr3

(Ru (NH&41 Os. 2D 1: 2,06- 2,02 1,72 0,0048 0,0048 0,0049 11-3) a)

±:-0,01 ±tQI ±0:01 ±0,0002 ±0,0002 ±0,000

11: 1,80 1,90 2,06 0,0048 0,0048 0,"-5

111: 1,15 1,84 2,66 o0"i 0.0041 O,0o5 101 1,09±O,a

Ru: In0 I"±0t0002±0t-0002 L0002

equivay le n e oree, thes of each I.Th pln oi temro-
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TABLEz 4.6 (Continuation)

Agn, Rely

* *puy. jT.K ex, el ' A '"" I___________
A& (CH&N) 4 SsO& 297, 20 2,18 %04 111
Ag~&i 20 4,2 9-%06 1

AWOS.eH1HOI nepcyab- 200, 00, 20 -2,18 2,0 1:21

Re soI 0%,20 9-102j~ Ha62amaeno 6 ANNul (snasOUNO,
ceeptooes cipysiypa ot 4"e. mite)

"'4V

4 mp. T. ) :t0.o III M,=3, ocE iteexsKUNuaIHUM
sounsexcos uspuaesbmbi pepaU

If: Pt 1: 200 Ky1qC, 7uuul q

K,[rCI 20 17"284 ~p ci 8) 0,. 121 Bce KoMuneCi SKONSUCHTU

(N~A Ir~s] 20 g f g AxAjpxa A',A-=A: xouCKCM7xm RiaaeHT1ul;4 375d*"6 OWA .000OM 1~ OCH X, Y, 2 flapaaAelbMhl Pe6-Ir:~p-1:20%0 ±0,001 ±0,00010 ±0,0000 paM KyGmlientof CANHHqHO 4qC3KK
1 C OKT&A]Mp C6, 3maquxne A$

N&$ (IrBr] - KO 20 t2 ABJA 30 OCC K5~x&TW4 0P6J20 ±0 4:,02 10jo ,02 OC . . Z ah80i5U= O:J;HT&.

Na It: .J eHo 10 A20Bo.3m A' sW

A A' 3

07 cOA25 6.06107

&0,02 ±0,000
32 Napammi pacuus um em a(NHItClo np Ts=20 -V1K v PasAuman IF: Ptai:j 1 .- G
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TABLE 4.6 (Continuation)

UIII

I l... *1K " .. A J * 3

34 33
Utlt D CaP$ 20 31501 1,86 1I] a); M,-3; Ha HoN

U: Ca= 10- ±L0,008 --0,002 ieAcTayeT acmaAib-
Ute noJe, KpHCTaA-

Uul s SrFs 20 8,433 1,971 amsiecx e ocu me-
U: Sr - 10-' -±-0,06 :0,002 9XIMaOAtU ,.,X 81-

floeI anpsemt no
Uu' a B.,'F, 20-10 3,337 2,115 16] 1PM SY6a O

U: Ba w= 10- 4  ±0,002 ±0,001

UC, A' 8215 Ps 12.3 ]
U: La U= 10- ' 20,.4 4,153 1,520 0,0176 0,00575 •0,00055

35 (o6oramen Utsn) :0,005 ±0,002 ±L0,001 ±0.00005 t000005

U: Nd 20, 4 8,991 1;769 A"' B18 pea [3]
U"': La 10-4 4, 2 4,149 1,520 0,03786 0,01236 0,009 [4]

36 (p -x o6oramen) 0,0012 ±0,00010 :-,0010

u1, 20, 90 2,8-29 Z.1-2,2 (5119 (, oKo)

UF. 290 g=.21. [51
19 (u00ou10)

Remark. a) A complex hyperfine structure due to the F- nuclei was
observed in CaP2 and SrF 2. It is well resolved into an even number of

components in some directions.

NpOI I , PuOI I
2 2__ _

_____r. it 2L ~A TB T1 3k'3Au~
A"' 81 psi 3;THonUTe~

(NpO,) Rb (NO,) 20-12. 8,40 0A20+1 010178, (-A=-4 1-M4 (Up. 14 4,8 ±001 ±0,02 ±0,00 ±0,00 ±0,008mau A v P onpe-
zaeu euapea

NpO,: UO, ctNao

$0A "'_A
S (PuO,) Rb %o 20-12 AM < 0.4 006 06 38'Aaao

4±(p.-a02 ±0.00 20%0 "MA - 0.70
PuO: UOsm 1: 17-1:200 A ±::006

Na (PO( ) 4 5,92 ,.0 (21 a)

(Pg.U) Osft(NO.)s 7-1.5 3,18 '-0 0.060 -0 [16')b

Remarks:£P a) Cubic; M = 4. Linear groups O-U-O lie along the body diagonals
of the cube; each U is also surrounded with six O from the acetate
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groups. Eight 0 form a distorted cube.
b) The spectrum is apparently due to unusual oxides of Pu, the

composition of which has not yet been established.

1) Formula; 2) reference; 3) remarks; 4) cr. st.; 5) direction cosines
of the axes are:; 6) FeIII in single crystals of myoglobin obtained

from whale muscle; 7) FeII in single crystals of hemoglobin
ClFe(C 6H4 )4 (CN)8;

8) Fe"'l: in ferrimyoglobin and ferrihemoglobin azide; 9) in borax

* beads; 10) in polycrystalline hemin; 11) in acid metaferrihemoglobin;

12) in acid metaferrlmyoglobin; 13) in fluoride of ferrihemoglobin;

14) in fluoride of ferrimyoglobin; 15) Z axis perpendicular to hema

plane; 16) the distance between maxima of the hyperfine structure, due

to the 57Fe nucleus is approximately 10 oersted; 17) asymmetrical line;

18) MoV in the form of contamination in [InC16] x 2H20; 19) (powder);

20) the unit cell contains two magnetically nonequivalent complexes; a

hyperfine structure due to the Cl nuclei is observed; 21) the unit

cell has several magnetically nonequivalent complexes; only two were

measured; 22) paramagnetic resonance was observed also in undilute

crystals of 3Ru(NH3)6]CI3, [Ru(NH3)5C1]C12 at T = 200K (1]; 23) di-o-

phenanthroline persulfate of silver; 24) six lines observed (possibly
the hyperfine structure of 185Re, 187Re); 25) HFS It; 26) HFS C1 or Br;

27) Mm = 3, axes of nonequivalent complexes parallel to the edges of a

cubic unit cell; 28) all complexes equivalent; 29) all complexes equiv-

alent; the X, Y, and Z axes are parallel to the edges of the cubic unit

cell and to the axes of the C16 octahedron. The value of A' is for 35C,;
30) all complexes equivalent; the X, Y, and Z axes parallel to the axes
of the Br 6 octahedron. The value of A' is for 7 9 Br and 8 lBr; 31) all
complexes equivalent; the X, Y, and Z axes parallel to the axes of the
Cl 6 octahedron. The value of A' is for 36C; 32) paramagnetic resonance
was also observed in (NH4 )2 frC1 6 at T = 20-2°K with a dilution ratio

Ir:Pt = 1:10 and 1:100 (3]; 33) a); Mm = 3; the ion is acted upon by
an axial field, the crystalline axes of the nonequivalent ions are di-

rected along the edges of the cube; 34) in; 35) (enriched with U2 3 5 );

36) (specimen enriched); 37) relative signs of A and P determined di-
rectly; 38) a small.
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Key to Table 4.7

1) Substance; 2) reference; 3) remarks.

A) in 0.05 cm3 of the crystal

B) Prior to irradiation, Cr3 + in NaF yields no spectrum down to 20 K,

but after irradiation a spectrum appears which is presumed to be

due to the Cr+ . The value of the cubic splitting parameter is a =

= 0.00036 + 0. 00004.

The constants of the interaction with the fluorine nuclei are:

As = 0.00128 + 0.00002, AG = 0.00009 + 0.00007.

On heating to 150 C, the irradiation effects disappear.

C) The line appears at 90°K after irradiation and has a flat top,

with a width of about 200 oersted; it is presumed that it is due

to Co+. After heating to 150°C, the irradiation effects disappear.

D) Prior to irradiation no spectrum is observed down to 20 0 K. After

irradiation spectrum appears, ascribed to Ni+. Mm = 3; the spec-

tra of the nonequivalent ions are similar and correspond to axial

symmetry; the symmetry axes of the nonequivalent ions are located

along the edges of a cube. The interaction constants with the F

nuclei are:
AI = 0.0041 + 0.0002, Ai = 0016 + 0.0003,
A CF

E) A" very small.

The index I pertains to the four F located in a plane perpendicular
to the symmetry axis, and the index II to the two F on the sym-
metry axis. After heating to 1500 C, the irradiation effects drop
out.

F) The hyperfine structure constants due to the interaction with F-

are:

G) Solutions: H) dipyridyl of chromium; I) dipyridyl of vanadium; J)

dipyridyl of titanium.

f K) Remark. As is determined by the contact interaction of the s elec-
trons, A. includes the dipole interactions and the coupling via
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the p. orbitals. It is assumed that As and A. are the same for

all six F.
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§4.3. Paramagnetic Resonance Spectra in Electrolyte Solutions

Paramagnetic absorption in liquid solutions of salts was first

observed by Zavoyskiy (1] in 1944.

From among the inorganic compounds in solution, the salts studied

predominantly to date have been those of the iron group ions. The sol-

vent used for the most part was water; in addition, various monatomic

and diatomic alcohols, glycerine, acetone, dioxane, and other organic

liquids were used.

A measurable resonant effect was found in solutions containing

the ions V02+, Cr3+, Mn2+, Fe3+, and Cu2+ . The observation of paramag-

netic resonance in solutions of Gd3+ and [W(CN)8 ]3- salts is also re-

ported.

The investigated absorption lines are either single or display a

hyperfine structure. The maxima of the fine structure are not resolved,

although it is known that in certain polycrystals (for example, in

chrome alum powder) they can be observed. In solutions, on the other

hand, the fine structure is manifest only in the width of the line.

The values of the effective g factors are close to 2, but for

some ions, particularly for Cu2+, their exact value depends appreciably

on the nearest surrounding of the ion. In particular, a change in sol-

vent or complex formation lead to a change in S.

A hyperfine structure of paramagnetic resonance lines was observed

in aqueous solutions of the simple salts 55Mn2+ [2-4], 51V02+ (4, 5],

and also in solutions of the complex salts 63,65Cu2+ (6] and 18 3W5 + (7].

The spectrum is described by a spin Hamiltonian

g~$gpff*9 + A.

The resonant value of the field H0 = H*0 for the transitions (M,m) -

-+ (M - l,m) are given by the expression

H: --=H-Am- W- j- 11(1+ )-m'J,
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where H = hv/go, which is in good agreement with experiment in the

case of solutions of Mn2+ and V02+ in water.

tWhen the frequency of the oscillating field is low (v = 100 Mcs),

i.e., under conditions corresponding to the Zeeman effect, a single

peak with g = 1.00 is observed in the hyperfine structure in weak

fields in aqueous solutions of Mn2+. The position of this peak is

described by the formula
hv==P, (a)

where F is the quantum number of the resultant momentum of the elec-

tron shell and of the nucleus and gF F(F + 2F(F + 1.)- (I + i)

Indeed, when J = I = 5/2 we obtain gF = 1 for Mn2+. This effect,

discovered by Al'tshuler, Kozyrev, and Salikhov [2],* was the first

evidence of the influence of nuclear spin on the electron paramagnetic

resonance line. The fact that formula (a) is applicable to the descrip-

tion of the effect in aqueous solutions of Mn 2+ salts shows that in

this case the fine splittings are quite small as compared with the hy-

perfine splittings. Measurements in solutions of other ions (for exam-

ple, V02+ ) under weak field conditions have shown no agreement with

this formula.

In solutions containing the ions 5 7 Fe3 + 5 3 Cr+, and the hydrated

ions 63' 6 5Cu + , no hyperfine structure is observed because its con-

stant is small compared with the line width. For 57re3 + and 5 3 Cr3 +

the hyperfine structure constants are quite small also in all the

solid compounds of these ions. On the other hand, for the ions of
63j65Cu2+ the situation is to some extent close to that observed inaq

solid copper salts, which have trigonal synmetry; in the latter, the

hyperfine structure constant is small at sufficiently high tempera-

4 C tures and is close to isotropic; the A factor is lilewise close to iso-

tropic (see the foregoing tables for the solid salts of Cu2 + ).
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In aqueous solutions the copper ion is surrounded by a deformed

octahedron of water molecules; one of its axes is elongated because of

( the Jahn-Teller effect. It is obvious that we have three possible de-

formations of this type, corresponding to the same energy. Transitions

can occur between these deformations and impart to the Jahn-Teller ef-

fect a dynamic character in this case. Calculation (8] has shown that

one can explain on this basis the single line observed in aqueous so-

lutions of copper salts. On the other hand, the presence of a resolved

hyperfine line structure in solutions of several complex copper salts

is due to the fact that owing to the large mass of the ligands and to

their stronger bond with the Cu2+ ion, the Jahn-Teller effect loses

its dynamic character to some degree. Accordingly, the hyperfine struc-

ture constants increase and, like the g factor, they become less iso-

tropic. The values of the g factors and of the hyperfine structure con-

stants of the ions investigated in solution are listed in Table 4.8.

We note in conclusion that paramagnetic resonance was investigated

also in certain supercooled solutions (glasses) [12-14]. In this case

a hyperfine structure of absorption lines, which was anisotropic for

VO2+ and Cu2+, was observed for the ions 51VO2+, 53Cr3+ 55Mn2+, and

63C65Cu2+. In the case of Mn2+ the structure is isotropic, and at low

frequencies a single peak with g = 1 is observed, as in aqueous solu-

tions of this ion, but broader. One of the results of work done in

this field was the establishment of the value of the spin I = 1/2 for

the 57Fe nucleus (15]. The experiments were set up in cooled melts of

borax containing 57F'e.

- 198 -



TABLE 4.8
i Factors and Hyperfine Structure Constants
in Liquid Solutions of Paramagnetic Salts at

( Room Temperature

1 e ij HH K H L B p 8WI P CT 8PHT 0.I b f 1 pcr

1) Vo l+ 0,5+0,1 10 Bone 1,962-t0,002 116 4
VOCI,; VOSO, 0,3 Bona: aIe- 1,962 110

ToH=1:19 ±0,002
2) Cr' +  3+0,25 10 Bo~a 1,972 [91

Cr (NO _0 10,008
3) Mn +  0,2-0,01 10 Boa 2,000 95,6 (41

MCId; MnSO 4; ±0,002
Mn (NO,), 0,3 10 BoAS (-2)

4) Fes+ FeF] '+ [Feral 0,3 Bona (-22)
5) -01 ±O0l Bona 2,184l o Cis+4S-0,01.0,004

Cu (NO,),. 3HO 2,5 iHAOHNA 2,184 (9]
cinpT ±0,004

2 3 A2,eTo1 2,158 [91
±0,004

2+1 raiiuepim _ 2,088 (91
4 _11±0,004

6 Cu- aueTHitaieToUaT I AHOKCaH + 2,138" -- 70* [101
+-} ToJIyoA

• 0,08 2,130' -73" [101
3,I X.opo- 2,127' -79* (101

4opM + TO-
lf ~Yojn

' 0,14 WXAopa- 2,124' ,-790 (101
4)opM + To-

3.0.19 £'(Xnopo- 1,126" ,'-77" [1I01

4opu-+Icu-
pexxopic-
TAIA y r epon

7 Cu 3-aTraaa.eTouiaT I " obica.i- 2,1340 -73" (101
C 0,27 T y 2,129' -75' 10,

0,15 1 iAuioxcau -2,2' -3 3* [i1
8 CU 9TaHoazlAMHll 0,15 0Bona 2,11* -- 7' 11I

9 Cu A11tan.olaMilli 0,15 10 Bona 2,12" -75' [11

Remark on Table 4.8. the values of the . fac-
tors and hyperfine structure constants noted
with an asterisk have been obtained without
account of the second approximation.
fl Compound; 2) ion concentration, mole/liter;
3) solvent; 4) A, oersted; 5) literature; 6)
Cu - acetyl acetonate; 7) Cu 3-ethylacetonate;
8) Cu ethanolamine; 95 Cu diethanolamine; 10)
water; 11) water:acetone = 1:19; 12) ethyl al-
cohol; 13) acetone; 14) glycerine; 15) diox-
ane + toluol; 16) chloroform + toluol* 17)
chloroform + carbon tetrachloride; 181 diox-
ane-toluol; 19) dioxane.
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i4.4. Use of Electron Paramagnetic Resonance for the Determination of

the Spins of Atomic Nuclei

0One of the important results of investigations on the spectra of

paramagnetic resonance was the determination of the spins of several

atomic nuclei. Table 4.9 lists the corresponding data. It must be

noted that this table does not indicate the many cases when the value

of the nuclear spin, previously determined by other means (and some-

times unreliable), was confirmed by the electron paramagnetic resonance

method. Nor do we present in the form of a separate table the values

of the magnetic moments of the nuclei, obtained by this method, since

they cannot compete in accuracy with the data obtained by the nuclear

paramagnetic resonance method. Some information pertaining to magnetic

moments is given in the remarks for Tables 4.1-4.6.

TABLE 4.9
Values of Nuclear Spins Determined by the
Electron Paramagnetic Resonance Method

__________ IcrnuMI palypa II f- .O l I parypa

Vat 6 [] Moe' 5 7

Crag [ 9 Sm"' " [131
2 11 RU"S A~ [10 Was" 3 [141

Mn" 1 [32 'Eu" 3 [151

1 Ru"' 2 [01 Dy"' "25 [161
Fes T [41 C 7 5

4 5 Ce' -- [fl] Dy," A [161*Cs.  4 151 " [6

Cot [6 Nd"' 1 [121 Er"' 7 (17I
*Coe  5 [7) Nd"' 1 (121 I [182 . A" *Pu" --Ni 7 [8) d' 55 [9

moo" 5 - 2 I 2 P'
Mo - (91 7 " ~ 19

Sn' -i [,131

1) Isotope; 2) nuclear spin; 3) literature.
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Chapter 5

FORM OF PARAMAGNETIC RESONANCE ABSORPTION LINES IN

IONIC CRYSTALS AND ACOUSTIC PARAMAGNETIC RESONANCE

§5. 1. Introduction

The construction of a theory for the form of paramagnetic reso-

nance lines is a much more complicated task than a theoretical inter-

pretation of the paramagnetic spectra. Furthermore, the problem has

been very little investigated experimentally. Therefore, in spite of

the existence of several basic researches, many unsolved problems

still remain.

The deep analogy between the electron and nuclear resonances

frequently makes it possible to extend the results obtained iin one

field to the other field. In investigations of the form of nuclear

resonance lines, an important role is played by Bloch's phenomenologi-

cal equation (1]

dM L.Jz=- M..
[IM, H]i" T, -T, /T,-- (5.')

H== kHf + IH, cos 2 xv, t

where M is the magnetization at the instant of time t, M0 the equilib-

rium value of the magnetization corresponding to the static magnetic

field HO , y the gyromagnetic ratio, T1 and T2 the times of longitudinal

and transverse relaxation, respectively, and i, J, and k are the unit

vectors of the coordinate system. If the interactions between the mag-

netic moment of the particle and the surrounding is much stronger, un-

der conditions where the lattice is stationary (spin-spin interactions),

than the interactions with the lattice vibrations (spin-lattice inter-
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actions), then the longitudinal relaxation time T. can be identified

with the spin-lattice relaxation time T, and the transverse relaxation

time T2 can be called the spin-spin relaxation time. If the spin-

lattice interactions are stronger than the spin-spin interactions,

then both the longitudinal and the transverse relaxation times are de-

termined by the spin-lattice interactions, and therefore T1 = T2 = T.

Solution of (5.1) under stationary conditions leads to the follow-

ing expressions for the real and imaginary parts of the paramagnetic

susceptibility:

X, X.OT i~T2(vo -v)=--xvoTo I",
i +4'-0' T (v - v)'+ -I 72H ' Ts T,

. (5.2)
2 0 1 A- 4, " (v - v)* + 211 11 T-, TT

In most cases the observation of the electron paramagnetic resonance

is carried out under such conditions that the saturation factor is

small (1/4,y 2 HT T2 <1 1) and can be neglected. It must be borne in

mind that in formulas (5.2) we take into account only the component of

the alternating magnetic field which is circularly polarized in the

direction of the Larmor precession. The values of X' and X" depend

therefore on the sign of the static magnetic field and consequently on

the sign of v0. It follows from (5.2) also that X" = 0 if v0 = 0. This

is of course incorrect, since absorption exists also in the absence of

a static magnetic field. This shortcoming was eliminated by Garsten

[2], who obtained the following formulas for a linearly polarized wave:

,4- . , -') T, I -4 vo(v +v.) TjJ

i __ _____ Q1T' v+ s' }j1 (5.3)

We note that these expressions coincide with the known dispersion for-

mulas of Van Vleck and Weisskopf [3].
Shaposhnikov [4] developed a thermodynamic method of investigating
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relaxation phenomena. In considering paramagnetic resonance (5], he

arrived at the formulas of Van Vleck and Weisskopf by solving the dif-

ference equations for the magnetization of a paramagnet, derived ther-

modynamically by assuming the existence of a spin system that inter-

acts weakly with the vibrations of the lattice. Skrotskiy and Kurbatov

(6], following the Shaposhnikov method, presented a general thermody-

namic theory of relaxation and resonance phenomena in two spin systems.

Systems of this type are frequently encountered among paramagnets, for

many substances contain two sorts of magnetic particles.

Wangsness and Bloch [7] developed a statistical quantum theory

for dynamic phenomena in paramagnets, starting out from the equation

of motion of a corresponding statistical operator. It turned out that

Bloch's phenomenological equation (5.1) is valid if there are no spin-

spin interactions and if the paramagnetism is of pure spin nature

(there are no splittings of the energy spin levels by electric fields).

Thus, Bloch's phenomenological equation (as well as its various modi-

fications) is applicable in a rather limited region. Nevertheless, it

is used quite extensively because it gives a qualitative explanation

of various aspects of the phenomenon of paramagnetic resonance: 1) it

follows from the equation that the form of the resonance line is de-

termined by the time T2 = ' and is independent of T1 = if the spin-

spin interactions are stronger than the spin-lattice interactions, and

conversely the line shape is determined by the time T2 = T1 = T and is

independent of the spin-spin interactions if they are weaker than the

spin-lattice interactions; 2) the equation makes it possible to account

for the dependence of the line shape on the intensity of the alternat-

ing magnetic field which is capable of producing "saturation"; 3) the

Z equation makes it possible to analyze quantitatively various transients

in radio devices containing paramagnets.
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The difficulties in constructing a microscopic quantum theory of

the processes that determine the paramagnetic resonance line shape

make it necessary to consider two extreme cases: either the spin-spin

interactions are much stronger than the spin-lattice ones, or are much

weaker. Because of this it is possible to assume that in the former

case we deal with interactions in a system of magnetic particles that

are in adiabatic conditions, and that there is no energy exchange with

the lattice vibrations (or with the Brownian movement of the particles

in a liquid). In the second case it is usually assumed that the mag-

netic particles are isolated from one another and each interacts in-

dividually with the lattice vibrations. In the sections that follow we

shall discuss the theoretical and experimental investigations of spin-

spin and spin-lattice interactions in ionic crystals and in their liq-

uid solutions. In addition, we shall consider the theory of acoustic

paramagnetic resonance, a phenomenon whose study can yield valuable

information on spin-lattice interactions.

§5.2. Spin-Spin Iteractions

1. If two neighboring magnetic atoms are at a distance r from

each other, then each Zeeman energy level will be broadened by dipole

interaction by an amount -h/1r. This can be visualized in the follow-

ing fashion. Each atom is acted upon not only by the external magnetic

field H0 but also by a local field Hlok, produced by the neighboring
particles. The resonance condition therefore assumes the form hv =

pga(H 0 + Hlok). Since the average scatter of the possible values of
lo k is of the order of p/r3 , it is clear that we obtain for the width

of the resonant line Av the value given above.

If all the magnetic particles are identical, then in addition to

the "magnetostatic" broadening mechanism which we have already con-

sidered, there is also a second broadening mechanism, a "dynamic" one.
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Let us consider two precessing dipoles with oppositely directed moments.

Each of these produces at the location of the other an alternating

field of resonant frequency, under the influence of which the moments

can exchange orientations, for the total energy is conserved in this

case. The limitation on the lifetime of each particle at a definite

Zeeman energy level leads to a broadening, which again, in accordance

with the uncertainty relation, has a value ~h/p 2r-3 .

The computation methods developed to date make it possible to cal-

culate the moments of the resonance absorption curve. By k-th moment

of an absorption line is meant the quantity

3 1 "= __( z)k_()(V (5.4)

If the paramagnetic resonance line has a Gaussian shape (1.20), then

at M2 = o2, M4 = 3a4 . If the line shape is Lorentzian (1.21), then in

order for the integrals Mk to converge for positive k, the g(v) curve

must be cut off. If we assume that the function g(v) = 0 when M2 =

= Av/7r, M4 = a36v/37r, then Iv - vo I> a.

This method was first used by Waller [8], and then by Broer [9]

to estimate the magnitude of the spin-spin interaction. An analysis of

the paramagnetic resonance absorption line shape by the method of mo-

ments was carried out by Van Vleck [10]. Van Vleck's theory is based

on the following assumptions: a) the particle magnetism is of the pure

spin type; b) there is no paramagnetism; c) the frequency of the oscil-

lating field is so high that the Zeeman energy is much larger than the

average energy of the spin-spin interaction of the neighboring par-

ticles; d) the exchange forces are isotropic; e) the temperature is so

high that all the Zeeman levels are equally populated.

The Hamiltonian of the spin system contains the Zeeman energy as

well as the dipole-dipole and exchange interactions:
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4 1" C 1 Vi ~ ' A i nU + 06o i ( 5 5 )

where
j (5.6)

,, , k jk ,' (5.7)

dOU=2JkSjS. (5.8)
j<k

Here zJ denotes the z-th component of the vector matrix of the

spin momentum of the J-th atom, rjk is the distance between the JI-th

and the k-th atoms, Ajk = 2Z2 1 jk where Z is the number of electrons

in the unfilled atomic shell, and Ijk is the ordinary exchange integ-

ral. It is convenient to represent the dipole interaction matrix in

the form
., ,,,,= A+ +L + f) +P + P = "a, rjl×

X (Jk +-i- + ck + dj + ;,k +/,),

,, 3 c-3,os' -,,k) , + §k,, ,), (5.9)

Cjk 'I*k = -sin OjkCOS &Jk eI"k(S.'kS + ...'),

eCk -f' - sine jk e-2iY1k.j.+k+,

A A 
-

where S, Sx +iy and k is the angle between and rk.
- y jk k

We choose a representation in which the matrices Szj are diagonal;

their eigenvalues are denoted by mJ. The magnetic quantum number of

the entire spin system will be M = m. If we neglect the interactions

between the spins, then we obtain a system of equidistant energy levels

Im = gPHoM, which will be strongly degenerate, since there exists a

tremendous number of combinations of values of m3 which lead to one

and the same value of M. The eigenfunctions .izeem will be denoted
A A

mI, in2, .." If Hdip + Hobm are considered as a perturbation and

the ordinary perturbation method is used for the degenerate case, then

I• * to solve the problem in the first approximation we must calculate the
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perturbation matrix elements with the aid of * functions that pertain

to only one considered energy level EM. We can readily see that the

application of individual parts of the perturbation operator to

M; M1, m2 , ... will give new * functions for which the values of M,

mi. and mk will change in the following manner:

aa/k: AM 0 0, A1-1 i O, A .-= 0;

d/k: AMI=--- I , Anti { 0 AMt= { I;

b/k: AM o, Anti = ._L- , AM 1; (5.10)
ejk: AAI =2, Ant = 1, Ak=1;

cjk: AM ,= IAnt 0 , Antk j ;

f/k: AM 'I--2, Ani -- A/in, = -

The operator Hobm acts like From (5.10) and (5.8) it is seen that

the nonvanishing matrix elements pertaining to the level EM contain on-
AAA

ly the matrices A, B, and H,~~ BanHobm .

The probability of transition between two Zeeman levels EM and

EM, under the influence of a radio frequency field directed along the

x axis will obviously be proportional to I<MI^xIM'>I 2 . Since the mat-
A A

rix element of the operator Sx ZS is in first approximation dif-

ferent from zero, provided only M' = M + 1, then only one bright ab-

sorption line can appear, with the Larmor frequency vO. In the next

approximation we must also take into consideration the operators C,

and P in order to calculate the perturbation energy, and conse-

quently the wave functions corresponding to the energy level EM assume

the form *M + 61M- + S2*M+l + e3 *M+2 + 64*M-2 where the ei are of

the order of 02r-3/gBHo. It is clear that in the second approximation

transitions are also possible from the level M to the levels M' = M,

M + 2, and M + 3. Thus, satellites at frequencies 0, 2vO, and 3v0 ap-

pear at the fundamental line of frequency v0. The intensity of the

satellites will be related to the intensity of the fundamental line
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approximately as 2:1. If still higher approximations are taken into

account, then weak satellites at even higher frequencies can appear.

2. When considering the principal resonance line, we must cut off

the Hamiltonian (5.5) by discarding from it the terms C, D, E, and F,

which do not commute with the principal part of the Hamiltonian Hzeem*

The eigenvalues of the cut-off Hamiltonian H+ will be denoted by .Hn,

and the transition frequencies by VnnI. Then, by definition, we have

for the mean square of the absorption-line frequency

S{v',. I ("°a' I ")jfl t'}
S n' I .n) )

n, Il)

This expression can be represented in the form
<,,.> = Sv - &~ .,.= )'.

SP ,h' ,p(S, ) (5.12)

It would be quite hopeless to attempt to calculate the eigenval-

ues of Hn, for their number is comparable with the number of atoms in

the crystal. The great advantage of formula (5.12) lies in the fact

that it contains only the diagonal sums, the invariance of which makes

it possible to carry out the calculations in an arbitrary representa-

tion. The simplest obviously will be a representation in which the

spatial quantization is carried out for each spin separately. After

calculating the traces of the matrices contained in (5.12), we find

that the second moment of the absorption line is

(,-- ,1', (5.13)

where k numbers all the magnetic particles of the lattice, and the in-

dex 1 pertains to a certain atom which is chosen as the reference point

for the calculations. For a crystalline powder we have

M,=g1h-1S(S+ r
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For a simple cubic lattice, with a constant equal to d, we obtain

8(5.15)

If the quantum mechanical calculations are replaced by the mag-

netostatic calculations and the influence of the broadening mechanism

which we have called dynamic is thereby discarded, then we obtain for

M2 the same expression (5.13), reduced by a factor 9/4. This reduced

value should be used only when we deal with the broadening due to the

interaction between dipoles of different sorts, for example of para-

magnetic atoms with nuclear spins of surrounding diamagnetic particles.

Thus, if we have magnetic particles of two sorts with spins S and S'

and spectroscopic-splitting factors Z and g', then the second moment

of the resonance line produced by the particles of the first sort will

consist of (5.13) and the following expression:

S -g2' S"'' (S' + 1)jrj' (3 cos'& j - 1)2, (5.16)

where the index 1 pertains to some particle of the first sort, which

is chosen to be the reference for the calculations, and I numbers the

particles of the second sort. If g' = g, then these formulas are not

suitable, for now the resonance lines produced by the particles of the

different sorts coalesce into one. This case was considered in [11].

Van Vleck also calculated the second moment M2 of the absorption

curve which includes not only the fundamental line, but also the sup-

plementary lines at frequencies 0, 2gPH0, and 3gH 0 . It turned out that

= 10/3M2, and that this relation, as was already pointed out by

Broer (9], is independent of HO, since the heights of the supplementary

absorption curves are inversely proportional to HO, whereas the fre-

quencies are approximately linear in H0.

£Let us turn to an examination of the fundamental paramagnetic res-
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onance line. It is seen from (5.13) that the isotropic exchange forces

do not affect the value of the second moment of the absorption line at

all. Therefore, in order to evaluate the influence of the exchange

forces on the line shape it is necessary to make use of higher moments.

The fourth moment was calculated in the same paper of Van Vleck, while

the sixth moment was calculated later by Glebashev [12]. We note that

the odd moments vanish and consequently the absorption line is symmet-

rical. Calculations have shown that in case of pure dipole interac-

tions the ratios of the moments are close to the values obtained for
S1/6. 1/41/the Gaussian function, namely: "6 "4 : Ml/= 1.57:1.32:1. If the

exchange interactions predominate over the dipole ones, then 1/4.

:Ml/2 >> 1 and consequently the line assumes a Lorentzian form. Inso-

far as the area of the absorption curve and its second moment do not

contain exchange integrals, we can conclude that the absorption line

becomes narrower in the center and becomes accordingly less steep on

the edges.

This narrowing down of the lines under the influence of the ex-

change forces, which was noted already in [13, 14] is the consequence

of the assumptions on which the Van Vleck theory is based, and which

cannot be accepted in many cases for real crystals.

The theory of dipole broadening as developed by Van Vleck was ex-

tended by Kittel and Abrahams [15] to the case of solid paramagnetic

solutions. It was found that if the concentration of the paramagnetic

atoms is f > 0.1, then the line retains a Gaussian form and its width

is proportional to 4Tf on the other hand, if f < 0.01, then the line

shape becomes Lorentzian, and the width is proportional to f. Glebashev

[16] generalized these calculations, taking also account of the influ-

ence of exchange isotropic forces.

3. The assumption that the paramagnetism has a purely spin nature
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greatly limits the applicability of Van Vleck's theory. In fact, if

the effective spin is S' > 1/2 then there are always small splittings

of the spin levels by the electric field of the crystal. On the other

hand, if S' = 1/2, then the influence of the crystalline field is

still felt and the . factor becomes anisotropic.

Pryce and Stevens (17] generalized Van Vleck's theory and pointed

out methods of calculating the moments of curves for a great variety

of cases. The general calculation method consists in the following.

The Hamiltonian of the spin system is represented in the form

V = 1-_? 0 (5.17)

where the principal part of the Hamiltonian H determines the energy

levels the transitions between which produce individual lines of the

paramagnetic resonance spectrum, while the perturbation W serves as

the cause of broadening of these lines. Expressions of the type (5.12)

are then set up for the calculation of the moments of the line. In or-

der to separate only the absorption line of interest to us, the opera-
4 A

tors W and Sx are so cut off as to make the cut-off operator W com-AA

mute with A0, and the cut-off operator Sx contains only nondiagonal

matrix elements, which ensure the necessary quantum transitions. The

matrices W and Sx are cut off either with the aid of the corresponding

projection matrices, as was proposed by Pryce and Stevens (17], or by

directly crossing out the unneeded matrix elements.

The following cases are considered in (17]: 1) there is one sort

of particles, all the energy intervals of which are different in the

unperturbed state; 2) the particles in the unperturbed state have co-

inciding or nearly degenerate levels; 3) there are two sorts of par-

ticles; 4) there exists a hyperfine structure of the energy levels of

the particles. In addition, Pryce and Stevens considered the question

of the dependence of the absorption line width on the temperature and
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on the form of the crystal. The perturbation usually has a two-particle

character and can be repreb nted in the form W = j Wij. The resulting; i,;jJ
second moment, expanded in powers of l/kT, is

,1 == (,o 11 (V", d +-Lg I I~ + (5.18)
ij i,/

where a 0 and a1 are certain quantities independent of W and T. By vir-

tue of the fact that W2 decreases at least as fast as 1/r6k,
kwe can

carry out for the temperature-independent part of the moment M2 the

following transformation:

, 'YI(.i)I-N I w",). (5.19)

It is immaterial whether the particle i, chosen as the reference for

the calculations, is located at the center of the crystal or near its

boundary. The transformation (5.19) cannot be applied to that part of

the moment which is proportional to l/kT, since Wij decreases slowly

with increasing rij. As a result the paramagnetic resonance line

should shift near the Curie point, and the line width will depend on

the temperature and on the form of the crystal. From the microscopic

point of view it can be stated that the factor of demagnetization of

the investigated specimen becomes essential near the Curie point. Gle-

bashev [18] made detailed calculations of the dependence of the moments

of the resonance line on the temperature. At sufficiently low tempera-

tures the paramagnetic resonance lines will become asymmetrical and

their width will change.

4. Ishiguro, Kambe, and Usui [19] calculated M2 for nickel fluoro-

silicate, which has only one magnetic ion per crystal cell. The prin-

* cipal Hamiltonian has the form

{.=+ (5.20)
2
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The spin level scheme for the individual particle was shown in Fig.

3.2. If the field H0 is parallel to the hexagonal axis of the crystal

(the Z axis) we have for both lines -1 - 0 and 0-+ 1

5° ) 4']. (5.21)

For the case H0 A. Z, this same formula will hold true if we assume

g6H0 >> D. Calculation of the lattice sums yields

h 2 = --A '-+ HO 11 Z; h'M t .6A' + - - -- - .Z. (5.
0.. - d$. He -L z. (5.22)

From a comparison with experiment [20] we can estimate the value of

the exchange coefficient jAl =-0.027 cm-1 '

Griffiths and Owen [21] observed a discrepancy between their neas-

urements of the line shape of Tutton's salts of nickel and the theory

of Ishiguro, Kambe, and Usui. Stevens [22] made detailed calculations

and showed that the discrepancies are due, first, to the presence of

two nonequivalent paramagnetic ions per crystal cell in Tutton's salts,

and second to the more complicated form of the spin Hamiltonian, which

contains the additional term E(SX2 - S2). From a comparison with the

experimental data, Stevens estimated the exchange coefficient at A =

-0.026 cm- 1 .

Kambe and Ollom [23] calculated the second moment of the central

paramagnetic resonance line (transition -1/2 - 1/2) for half-integer

particle spin S. Because of the action of the crystalline field, other

transitions give lines at different frequencies and are not considered

in this work.

a) If all the particles are equivalent, then

s 2s(s+,),-3S(S+)+-
3+ -- 2(2S+ I) Ah

I2 S (S + I)$+

+ 1  ,S(S+1 )+- 2 v
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1) .. S '(S ± 4 s + (S + l ) +
2 : .. I (2S + i0 IX

/ -d;(3 cost j,, - 1).
(5.23)

b) If there are particles of a different sort with g-factor g'

and spin S', they make an additional contribution:

,h.M=- S',(S ,+.() [A,± (1-3oS' jh.)]J. (5.24)

c) If there are several nonequivalent particles of one and the

same sort in the crystal cell, then the interaction between the con-

sidered type of particles with the other nonequivalent particles gives

an additional contribution to the second moment:

h'M =[s(s+ 1)-"(S I + (S I] j.+

x( 3 cos,,,.-)+['S(S+,)+'(2s+)+ (2SI+I)& o x

X 9T(3 cos't, h - 1'. (5.25)

If we denote the second moment, calculated by formula (5.13),

which is valid in the absence of crystalline splittings, by M*2, then

we obtain for purely dipole interactions:

Aft' M

"V I I

3 9 4
-i To- -
5 107 257
T 105 15

7 881 16
T M 180

Abragam and Kambe [24] calculated the dipole broadening of the

resonance line due to transitions between energy sublevels arising in
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the electric field of the crystal, if the external magnetic field is

equal to zero. The following assumptions were made there: a) the spin

is S = 1 or 3/2; b) the crystalline field has axial symmetry; c) the

symmetry axis is the same for all particles. The following expressions

were obtained for the second moment of the resonance lines:

S = I: Ar '--- 1 r, X
kX[5 (1 - 3 ) 7 -) (1 - TU)' --2 (1 - 37j,) (mj'k -- j,)1

3 1' ,4 _ , (5.26)
S= -: ,46:X= ,/ ( ,

2 96h

X [207 (1 - 3 j)k + 151 2 ik (I - 37j) + 4 59 ( -p)' -(1
- 108 - - jk)1,

where ajk , Pjk$ and Tjk are the direction cosines of the radius vector

rjk , if the Z axis is taken to be the symmetry axis of the crystalline

field. For a cubic lattice with an electric field parallel to one of

the axes

S= 1: Al,=,3,4 KT-; S= M, =60,0h (.)
1,20h~ds(5.27)

Calculations were also made for the broadening due to the pres-

ence of "nonresonant" particles (particles of the second sort, not

participating in the production of the resonance line).

5. In all the investigations which we have Just considered, where

the existence of energy splittings due to the electric field of the

crystals was taken into account, it was assumed that the action of the

crystalline field is much stronger than the dipole and exchange inter-

actions. If this is not so, then the appearance of the resonance lines

becomes possible if the external magnetic field causes splittings that

are much larger than the crystalline ones. In this case the Hamiltonian

term that takes into account the influence of the crystalline field

should be transferred from the main part k into the "perturbed" part

W. The crystalline field will participate in the broadening of the res-

onance line along with the dipole and the exchange interactions. This
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case was considered by Berson (25], who proposed that the action of the

crystalline field can be represented by an axially-symmetrical Hamil-

tonian ES2 + FS 4. Calculations have shown that the second moment is

equal to

~ ) ri*(3 cps' DI,- 1) +

.-- 14S(S+ 1)-31El +[48S'(S+ -1)'- 76S(S-1) + 301 F-+

- 10 ([ l I'( _ 1)3 -- ,8 2(S 1)2-336 S(Sd- 1) -7 135F . (5.28)

Here, as in the case considered by Van Vleck, the second moment is in-

dependent of the isotropic exchange interactions.

6. In many crystals the paramagnetic ions of which contain an odd

number of electrons, the ground level of these ions is a Kramers doub-

let. Among substances of this type are the investigated salts of rare-

earth elements, many salts of the iron-group elements, etc. In spite

of the fact that in all these cases the ground level can be character-

ized by an effective spin S' = 1/2, nonetheless the Van Vleck theory

is unsuitable here, too. The electric field of the crystal cannot split

a level with S' = 1/2, but it can give rise to a strong anisotropy of

the g factor.

Kopvillem (26] calculated the second moment of the resonance line

for this case under the following assumptions: a) the crystal tempera-

ture is so low that only the lowest Kramers doublet is populated; b)

all the paramagnetic ions are equivalent and consequently have the

same g-tensor. Since the spin-lattice interactions are for the most

part very strong in paramagnets of this type and the observations of

paramagnetic resonance must be made at low temperatures, the dependence

of the line shape on the temperature can therefore be of importance

and was consequently taken into account in the calculations of the

moment M2 .

The calculations have shown the following: a) the line width de-
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pends on the direction of the static magnetic field; b) the isotropic

exchange forces influence the value of M2 , and consequently the ex-

change interactions generally speaking increase the width of the reso-

nance line; this broadening is different for different magnetic field

directions; c) the line width due to the dipole interactions decreases

with decreasing temperature. The magnitude of the second moment due to

the dipole interactions was found to be

(I -j) + Bj)%e-+ B,'X

X (3 +2e- + t) , , 3 _)(B + ,)) (I + 3e')}, (5.29)

9f- , B(2 == gls 3th3cs' (),a -- x ,Zk T ' j Ij U

where x, y, and z are the principal axes of the S tensor, is the

angle between r lj and the a axis. Calculation of the lattice sums

gives, for example for ethyl sulfates of rare earths and for a field

H0 parallel to the crystal symmetry axis,

M,= -66,73 g' F2[(1 + e')al-' e'(' + 3 + A2) +
+ o,5 e"' + 1,5 -+1, (5.30)

IL

where a is the larger side of the ethyl sulfate elementary cell. Kop-

villem's calculations were further developed in [114].

7. If the exchange interactions are sufficiently strong, they in-

fluence not only the paramagnetic resonance line widths, but can also

change the line positions. One such case was experimentally investi-

gated by Bagley and Griffiths (27] in the salt CuSO4.5H20. The crys-

tal cell of this substance of this substance contains two ions with

different magnetic axes. Two resonance lines of approximate width 115

oersted were therefore observed with the aid of a radio frequency

field at a wavelength X = 0.85 cm. Were we to have X = 3 cm, then these

lines would be approximately 500 oersted apart, but experience has

-220 -



shown that they coalesce into a single line. A theoretical explanation

of this fact was presented by Pryce (281. The Hamiltonian of the spin

system has the form

= P'g' 0 + PS"g"H# + O (5.31)

where S' and S" are the total spins of all particles of the first and

second kind, and g' and g" are the corresponding g tensors. For sim-

plicity no account was taken here of the dipole interaction. Formula

(5.31) can be represented in the form

+ )(R'+ g) H. + (5.31a)

.=-, (S' - S") (g' - g") Ho.

Were there no "perturbation" W, then, in view of the fact that both

terms of H0 commute with each other, a transverse radio frequency

field should give rise to transitions between states, for which the

components of the total spin S' + S" in the direction (g' + g")H0 dif-

fer by unity, and the exchange energy is conserved. The result should

be one sharp absorption line. The perturbation W changes the inter-

vals between the unity levels, the transitions between which are al-

lowed by the selection rules. The line broadens. In addition, the per-

turbation causes overlapping of the wave functions pertaining to dif-

ferent exchange-energy levels, and consequently the selection rules

change together with the line shape. At higher frequencies, at large
A

fields HO, the value of W can no longer be regarded as a perturbation,

for it becomes comparable with the exchange energy. It is easy to im-

agine that two absorption peaks can appear under such conditions.

A second example of the influence of exchange interactions on the

form of the spectrum is the reduction in the hyperfine splittings of

the resonance lines, occurring under the influence of the exchange

forces. Assume that the interaction of the magnetic moments of the nu-
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cleus and of the electron shell is characterized by an isotropic hy-

perfine structure constant A. If we disregard the nuclear spin, we can

assume for simplicity that all the paramagnetic atoms precess about

the external magnetic field with one and the same Larmor frequency.

Because of the interaction between the electron and nuclear moments,

different atoms will have one of the 21 + 1 precession frequencies,

which differ by small amounts on the order of A/h, with equal proba-

bility. Let the period of the exchange be T = h/J (J is the exchange

integral). If T >> h/A, then the precession will change during the

course of the exchange by an amount -A/h; if on the other hand T < h/A,

then all these changes will average out and the individual peaks of

the hyperfine structure will coalesce into a single line. Consequently,

the reduction in the hyperfine splitting can be expected only when

J > A. These arguments can be qualitatively confirmed by the method of

moments. The Hamiltonian of the spin system can be written in the form

= H# + A
I J,h It

The first term denotes here the Zeeman energy, the second the exchange

interactions, and the third the magnetic interactions of the nuclei

and the electrons. Calculations made by Van Viringen (29] have led to

the following expressions for the second and fourth moments of the res-

onance line:

M, = j h-tA' (I-+-1),

M4 k~ I- ){~-II+)-~]A&+j (5.32)

The exchange forces do not enter into M2, but they do increase M4. We

can conclude from this that the exchange interactions shift the absorp-

tion from the center of the spectrum to its edges. This redistribution
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of the intensities of the different parts of the spectrum can occur in

two ways: 1) the intervals between the hyperfine components are de-

creased and the absorption is increased on the curves of the entire

spectrum; 2) the intervals between the hyperfine components remain un-

changed, but each line becomes narrower at the center and broader at

the skirts. It was shown by the method of random functions that the

first possibility is realized.

8. In most cases it is possible to calculate only the second mo-

ment of the absorption line, while calculations of the higher moments

are exceedingly difficult. The information obtained on the paramagnetic

resonance line shape by the moment method is therefore inadequate. An-

derson and Weiss [301 proposed to use the method of random functions

so as to obtain more detailed information on the absorption line

shapes, particularly the exchange narrowing of these lines. This idea

was developed in the papers by Anderson [311, Kubo and Tomita [321,

and others. Since we are unable to describe in detail the results of

all these investigations, we shall stop to discuss only the principal

idea and the most important applications.

The narrowing down of the resonance line under the influence of

the exchange forces can be visualized as being the consequence of fre-

quency modulation of the precessional motion of the individual mag-

netic dipoles. How frequency modulation acts on the width of a reso-

nance line is best understood from the following example, which was

analyzed in [33, 31]. Let us consider an oscillator which is subjected

to random collisions. Let the average time interval between two col-

lisions be T. We assume that the oscillator has two different natural

frequencies, v. and v2. Assume that after each collision the oscilla-

tor changes its frequency, going over from v1 to V and back. If the
41

oscillator "suffers from complete lack of memory" and its state prior
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to collision does not influence at all the subsequent motion, then the

form function is

II

212 (5.33a)

A more complicated form function is obtained in the case of "good mem-

ory." If only the oscillator frequency changes after the collision,

while its position and velocity are conserved, then

'VI

g(9=2 _

+ Y"c) + 9d(,~)~~ 20,8  (5. 33b)
where

'c =i ('a + 'V,), Vm = (v1  - ,).

In the case of (5.33a), the intensity under resonant conditions

is proportional to T, and consequently both resonant lines spread out

with decreasing T, and finally, when T << 1/27v m they merge into one

broad line with resonant frequency vc. In the case (5.33b), if v = v ,

the intensity is proportional to l/r, and therefore both resonant

peaks merge at sufficiently small values of T into one line, which be-

comes narrower with decreasing T. An illustration of the foregoing is

seen in Fig. 5.1.

In a paramagnetic crystal the precession frequency of the mag-

netic moment is v0 + v', where v0 is determined by the externally ap-

plied static magnetic field, and v' is determined by the internal lo-

cal fields. It can be assumed that the frequencies v' have a Gaussian

distribution. We denote the mean value of (v')2 by v2. Owing to ex-
p

change interactions, the neighboring particles will exchange frequen-

cies, in the mean, after time intervals 1/v1  h/Jik. If we concen-

trate our attention on one particle only, we see that its precession

frequency will be constantly subject to random variations. If v1 >> Vp'
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Fig. 5.1. Reduction in the
width of the oscillator form
function with decreasing col-
lision time -r. It is assumed
that the oscillator has alter-
nately the frequencies v 1 and

V2,and retains its previous

velocity and position after
each collision. The curves
have been drawn for different

values of T. 1) -r = iol10 sec;

2) T = 0.5.10-10 sec; 3) T

= lo1 sec; 4) T = 0.5.10
sec. A) (in relative units).

this frequency modulation can appreciably narrow down the resonant ab-

sorption line. Calculation shows that the form function of the line

can be written as

.g (v) = I~ Re exp [- 2x1 (v-v#)tI- v,utjd1,(5 )

where

it~ e =S(-)exp (-940l') de. (5-34a)

The frequencies vpand v 1 can be determined from the following equa-

tions:
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I =, (5.35)

For a simple cubic lattice we have

,48/XJkh2 .. (5.36)

Inasmuch as vI >> Vp, it follows from (5.34a) that

u = 1/2t2 , if v - V0 
> > Vl

u = t/ I, if v - v 0 << v1.

Substituting in (5.34), we obtain in the former case

g (.)- eP, (5.37a)

and in the latter case

1PI __--- __________

(V _ Vo), + (O ,), • (5.37b)

Thus, in the case of strong exchange interactions, the absorption

line, being Lorentzian at the center, assumes on its skirts a Gaussian

form, thus ensuring that its second and higher moments are finite. In

place of the formula Av = 2.35v (see (1.21)), which is valid in the

case of pure dipole interactions, we now have

A=2 -P (5.37c)

It must be noted that if the exchange energy is very large, so

that vI >> v0 , then the value of Av given by this formula should be

multiplied by 10/3. The reason for it is that the cutoff of the Hamil-

tonian carried out in the calculation of (5.13) is no longer Justi-

fied here, for the energy difference between two neighboring Zeeman

levels hv0 can be strongly modified by the exchange energy. Conse-

quently, the alternating magnetic field of frequency v = v 0 can give

rise not only to transitions AM = +1, but also transitions such as

M = 0, ±2, ±3. Thus, in equating v 2 to the second moment of the ab-
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sorption curve, one must recognize that the principal resonance line

coalesces with its satellites. Consequently,

If the resonant frequency v0 is increased enough to make v >> VI ,

observation of the satellites beccmnes possible and the factor 10/3 in

the formula for the width of the principal line must be discarded.

§5.3. Spin-Lattice Interactions

Before we start to consider the results of the spin-lattice inter-

action theory in different types of ionic paramagnetic crystals, let

us dwell on some general problems.

1. Let us consider some pair of spin-system energy levels Ek and

E1 (Ek > El), the population of which is assumed to be Nk and N1 . We

denote by Akl the per-second probability of transition of the spin

system from the level Ek to the level E1 under the influence of the

lattice vibrations. The condition for statistical equilibrium is the

equation

NkAk = NAjh

If a Boltzmann distribution can be assumed, it follows that

Alk = Ake (--r (5.38)

We see that kl> Alk. This circumstance plays an important role

in paramagnetic resonance. Let the oscillating magnetic field of reso-

nant frequency give rise to transitions between the levels Ek and El;

the probability of such transitions per second will be denoted by pl

(see formulas (1.3) and (1.4)). Under stationary conditions we have

Nk(JAkjpkl=I'N~jkIVIlk-(5.39)

We can assume with great degree of accuracy that Pkl = Plk" If in ad-

dition Akl = Alk, then Nk = N1 and no paramagnetic resonance is pos-

- 227 -



sible. The difference Ak1- Alk decreases with increasing temperature

of the paramagnet, and consequently the resonant paramagnetic absorp-

tion decreases.

We have seen in §5.1 that under certain conditions the paramag-

netic resonance line width is determined by the spin-lattice paramag-

netic relaxation time T. If the energy levels Ek and the transition

probabilities Ak1 are known, then this time can be calculated by means

of the following formula [34]:
(Ek-E 1 )' (.0

IIA,,(Ft E,). ( 5.4o )

where n is the number of all possible states of the spin system. For-

mula (5.40) has been derived under the assumption that 1E1 - Ek1 << kT

is valid for all 1 and k. It follows from (5.40) that if we choose as

the "spin system" a single particle with spin S = 1/2, then T = Akl/2.

Paramagnetic resonance makes it possible to determine the transi-

tion probabilities Alk by the saturation method. Experiments of this

type are made to determine the saturation factors q = nlk/nl (com-

pare with §1.3), where n 0 is the difference in the populations of the1k
energy levels E1 and Ek, if the paramagnet is in thermodynamic equi-

librium state, and nlk is the same quantity under saturation condi-

tions. The saturation factors qlk can be readily expressed in terms of

the transition probabilities Alk and Plk' by setting up equations of

the type (5.39) for each spin level of the paramagnetic particle. If

all the intervals between these levels are different, and the resonance

is observed as a result of transitions between the levels E1 and E2

under the influence of a radio frequency field, then it is easy to

show [35] that

i--(+L (5.41)
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where the quantity WR, which Lloyd and Pake call the relaxation proba-

bility, is equal to

WR:.AgI+!JA~C~h.(5.41~a)

Here C2k is the cofactor of the elements of the second row and the

second column of the following matrix:

k-3

I ' 1

All- I Ak# I At, A,3,... All

- 3 - 3 ( 5 . 4 1 b )

..... ..... .................
Alm + Alm, At, Ao ..... A lm

.....................................

The experimental conditions are frequency adjusted in such a way as to

make q12 = 1/2. It is directly evident from (5.41) that in this case

WR = Pl2"

2. For reasons stated in §5.1, the theory of spin-lattice relax-

ation usually deals not with the entire spin system but with an in-

dividual particle interacting with the lattice vibrations. The calcu-

lation of the transition probabilities Alk between the energy levels

of an individual magnetic particle as a result of energy exchange with

the lattice is made by the perturbation method. In the unperturbed

state, the system considered by us consists of two noninteracting

parts: a paramagnetic ion and an aggregate of oscillators, which rep-

resent the elastic vibrations of the crystal. From among all the inter-

actions between the paramagnetic ion and the surrounding particles, we

are interested in those that depend on the magnitude of its magnetic

moment. Under the influence of the lattice vibrations, the magnitude

of these interactions will vary. This variable part of the energy of
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the bond between the paramagnetic ion and its surrounding does indeed

yield the spin-lattice interaction operator H'. We can then use the

perturbation theory developed in the theory of radiation [361.

Energy exchange between the paramagnetic ion and the lattice vib-

rations under the influence of the perturbation H' can occur in dif-

ferent ways, of which the most important are the direct (single-phonon)

processes and processes of combination scattering of phonons (two-

phonon). We denote the difference in the energies of any two states of

the paramagnetic ion by Elk. A direct process consists in an increase

(or decrease) of the ion energy by an amount Elk due to the vanishing

(or occurrence) of one quantum of elastic lattice vibrations (one pho-

non). Of all the lattice oscillators, the only ones that can partici-

pate in such processes are those whose frequency v satisfies the con-

dition

,,-h. (5.42)

The probability that the paramagnetic ion will go over as a result of

the direct processes from level E 1 to level Ek is

Us. (5.143)

Here pv is the spectral density of the oscillators with frequency v,

and H'ik is the matrix element of the spin lattice interaction, aver-

aged over the different states of the oscillators that satisfy condi-

tion (5.42). Frequently the matrix element HI relating the energy• . lk

levels E1 and Ek turns out to be zero in first approximation. Higher

approximations are then used and Hik is calculated through the inter-

mediate state of the paramagnetic particles.

Combination scattering of phonons is a process consisting of an

increase (or a decrease) in the ion energy by an amount Elk, owing to

the vanishing of an elastic-oscillation quantum of frequency v and the
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occurrence of a quantum of frequency v'; in this case, obviously, the

following condition should be satisfied:

(5.44)

For the probability of transition under the influence of combination

phonon scattering processes we have

A' =ho I 1h;,,d. (5.45)

It is seen from (5.44) and (5.45) that elastic lattice vibrations of

all frequencies participate in combination phonon scattering processes.

Therefore, in spite of the fact that the combination scattering of

phonons is a second-order process, it does play a principal role in

the relaxation mechanism if the temperature of the paramagnet is rela-

tively high. At low temperatures, the principal role is assumed by the

direct processes.

We denote the quantity A( ' ) averaged over different values of 1
lk(2

and k, by A1 , while the averaged value of A( 2 )k is denoted A2. From

(5.43) and (5.45) we obtain, if we assume that Elk << W,

A, A,= K2 (5.46)

Here p is the crystal density, T is the temperature, v the average

velocity of sound, while K, and K2 are quantities that depend on the

nature of the relaxation mechanism and on the energy level structure

of the magnetic particles, and consequently also on the applied mag-

netic field H0. By Jn we denote

"Pi~ (5.47),d..
.eX

where 0 is the Debye temperature. This integral can be calculated from

( the following approximate formulas [37]:

(T<S). (5.48)
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S

[,.~~( + ,00,r,,
U? +0 S

+(a+ 1)(+ 2) -e (5.49)

__(T> (5.50)

The value of n is usually 6 or 8. Therefore the relatively weak tem-

perature dependence of the relaxation time when T >> e becomes very

strong when T << e.

3. In the first theory of paramagnetic spin-lattice relaxation,

presented by Waller [8], it was assumed that the reorientation of the

atomic spin relative to the external magnetic field H0 under the in-

fluence of the lattice vibrations is the result of a change in the mag-

netic interaction of the spins, brought about by these oscillations.

Waller's calculations lead, however, to values of the relaxation time

which are several orders of magnitude larger than the experimental

data. A particularly sharp discrepancy between theory and experiment

was observed in titanium-cesium alums. Kronig [38] and Van Vleck [37]

therefore proposed a different relaxation mechanism. In many cases,

however, as was shown by Al'tshuler [39], Waller's mechanism can play

a principal role.

Waller's calculations were made for a paramagnet whose magnetic

particles have a spin S = 1/2. Yet the probability of the particle

spin reorientation under the influence of oscillations of the magnetic

forces acting on it is proportional to the fourth power of the mag-

netic moment of the particle. In addition, this probability is in-

versely proportional to R6 , if R stands for the equilibrium distance

between two neighboring crystal atoms having magnetic moments. Pre-

quently several such atoms are contained in a single crystalline cell.
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It is easy to see that in this case a more exact result will be ob-

tained if R is defined not as the average distance between neighboring

particles with magnetic moments, but the shortest one. It is clear

therefore that the magnetic forces can determine the spin-lattice in-

teraction in substances with large atomic magnetic moments and with

large magnetic particle density. Calculations have shown that

4'Z 0'
S(2S+,)(S+,)1. (5.51)

2%8Z , ,, ' 1i i( 5 5K .% S (2S + ,) (S+ 1), =O. ( 2

Here Z is the number of nearest neighbors of the particle. It should

be noted that Waller considered the relaxation due to the spin reori-

entation of one particle under the influence of the lattice vibrations

under the condition that the other spins conserve their directions.

Yet, as can be seen from (5.10), the matrix elements of the spin-

lattice perturbation differ from zero even in the case of simultaneous

reorientation of the spins of two neighboring particles. For this case

it follows from the calculations that

3h , -- _)'(gpH.)'(2s + '(s+ )', (5.53)

(a=-, t=ZT) (2S + I)' (S +I)n .=6. (5.54)

We see that simultaneous reorientations of the spins of two in-

teracting particles is much more probable than the change in spin ori-

entation of one particle alone.

In substances with large magnetic ion density, exchange forces

assume appreciable values. The energy of the exchange interactions has

for the most part the isotropic form A1 2 (r)'lA 2 ; it is an integral of

the motion, and consequently the exchange forces cannot cause, in

first approximation, a transfer of energy from the spins to the lat-

ftice vibrations. On the other hand, if the exchange forces are aniso-
tropic, the magnitude of the spin-lattice interactions which they pro-
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duce has the same order as in the case of magnetic dipole forces.

4. In order to explain why the spin-lattice interaction is very

large in titanium-cesium alums, Kronig [38] proposed the following re-

laxation mechanism. The elastic vibrations of the lattice modulate the

electric field of the crystal, and this causes a change in the orbital

motion of the magnetic-ion electrons. The action influences the elec-

tron spin through the orbital magnetic moment. This mechanism o4. spin-

lattice interaction is the principal one for the majority of salts in

the iron-group elements, in spite of the fact that the orbital motion

is "frozen" in these salts. Calculations have shown that

K,= T (o:1, , (5.55)

Here A is the interval between two lower orbital sublevels, arising in

the electric field of the crystal, r0 is the average distance from the

3d electron to the nucleus, a is the equilibrium distance from the cen-

ter of the magnetic particle to the nearest diamagnetic ion, and e' is

the effective charge of this ion. The factor (X/A)2 appears in (5.55)

because changes in the crystalline electric field cannot produce di-

rectly a reorientation of the electron spin, and acts through the or-

bital momentum. Since the orbital motion is "frozen," the matrix ele-

ment of the spin-lattice interaction differs from zero in the higher

approximations of perturbation theory.

It is therefore clear that in ionic crystals containing the iron

group elements the probabilities of relaxation transitions will always

be inversely proportional to a high power of the interval A. It is

known from experiment that the spin-lattice relaxation times at the

same temperature can differ by several orders of magnitude for differ-

ent elements. This is explained principally by the fact that the in-
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terval A can change on going from one ion to another from about 102 to

about 104 cm 1. In particular, for the titanium ion (see §4.2) we have

,A 500 cm .

An analogous but more complete theory of spin-lattice relaxation

was developed by Van Vleck [37] independently of Kronig. He considered

in addition to titanium salts also salts containing Cr3 + . Unlike the

titanium ion, the simple orbital levels of which are Kramers doublets,

in the chromium ion we have S = 3/2, and consequently the simple or-

bital level breaks up into two closely located Kramers doublets, the

interval between which will be denoted by 6. The expressions for T ob-

tained by Van Vleck are very cumbersome. The principal difference be-

tween them and (5.55) lies in the following. In the case of the direct

processes (goH0 )
4 is replaced by X2 g44H4 + c 6g2 P2H2 + c2 62 , where

c and c2 are certain numbers on the order of unity. In the expression

for K2 we have X
2J6 in place of h

2J8.

Bashkirov [40] calculated the spin-lattice relaxation time for

copper salts, the electric fields of which have tetragonal symmetry.

The copper ion Cu2+ , like the ion T1 3 + , has S = 1/2. However, unlike

the titanium salts, the matrix element of the spin-orbit interaction,

which relates the lowest orbital states, is in this case equal to zero.

Therefore in place of one interval A, the formula for the relaxation

time contains two intervals, A0 and A, where A0 is the splitting in

the field produced by the octahedron of the water molecules surround-

ing the Cu2+ ion, and A is the interval between the lowest orbital sub-

levels, arising in the field of tetragonal symmetry. In formulas (5.55)

it is necessary to replace A-6 by AO2A-4 .

The following singularities were observed experimentally in many

copper salts: 1) the spin-lattice relaxation time at room temperature

depends strongly on the angle 0 between the field H0 and the tetragonal
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axis of the crystal [41]; 2) the paramagnetic resonance spectrum in

CuS04"5H20 can be explained by assuming the constant X to have appre-

ciable anisotropy [42]. If the constant X is replaced by a tensor with

principal values Xj, Xj, Xj, then in formula (5.55) X2 must be re-

placed by 1/2[X sin2 0 + 42 (1 + cos 2 i)]. If we take for X# and )j

the values assumed in [42], we obtain good agreement with the measure-

ments of [41].

It follows from Kramers'theorem that the spectra of ions with an

even number of electrons should have many singularities. Avvakumov

[43] undertook detailed theoretical calculations of the spin-lattice

interaction for crystals with such ions (V3
+ , Cr2+, Mn3+ , Fe2+ , Ni2+).

In the case of Ni2+ , as in the case of the Cr3 + investigated by Van

Vleck, the lower orbital level is simple under the action of a field

of cubic symmetry. Therefore the interval is 6 - l04 cm-1 and the re-

laxation time is relatively large. In the other ions considered by Av-

vakumov, the lower orbital level is degenerate under the action of a

cubic field, and therefore A denotes the interval between sublevels

produced in a weak field of low symmetry. Because of this, the relaxa-

tion time of salts containing these ions turned out to be relatively

short and observation of paramagnetic resonance is impossible at room

temperatures.

If the relaxation is due to the combination phonon scattering

processes, then the temperature dependence of T is determined by the

integral Jn' in which n = 6 for the Cr2+, Mn3+ , and Ni2+ ions and n = 8

for the e 2+ and V3 + ions. Calculations have disclosed a strong de-

pendence of the relaxation time on the value of the spin S; at low tem-

peratures T - S-12 and at high temperatures T - S-8 . A noticeable de-

C pendence of the relaxation time on the angle between the field H0 and20

the axes of the crystal was established also for all ions, except Ni2+
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As to the dependence of r on the magnitude of the field HO , this de-

pendence becomes noticeable if gpH0 > 6.

5. A special analysis is necessary for ions in the S state. Alt t-

shuler [39], using the salts of trivalent iron as an example, consid-

ered relaxation due to the direct processes. Bashkirov [44] made de-

tailed calculations of the relaxation which is due also to second-

order processes for the ions Mn2+, Fe3+, Eu2+ , and Gd3 + . If we denote

by 6 the magnitude of the total splitting of the spin levels by the

crystalline field, then the results of the calculations will essen-

tially reduce to the following:

K 'LPs.). Kin,, .=6. (5.56)

Comparison of these formulas with (5.52) and (5.53) shows that Waller's

mechanism can play the principal role when

S&--"(2S+ 1)(S+4I (5.57)

This is apparently the case with manganese salts, for which the split-

ting 6 is relatively small.

6. The theory of spin-lattice relaxation for salts of the rare

earth elements was given by Al'tshuler [45] with the cerium ion as an

example; it was assumed there that the crystalline field consists of

two parts, a strong field of cubic symmetry and a weak field of lower

symmetry. Shekun [46] made a theoretical analysis of relaxation in

ethyl sulfates of different rare earth elements. We recall that the

crystalline field in ethyl sulfates has trigonal symmetry.

In rare earth compounds, the lattice vibrations, by changing the

crystalline field, can directly change the direction of the moment of

the paramagnetic ion, for in this case the coupling between the spin

r and orbital momenta is stronger than the action of the electric field

of the crystal. One therefore obtains for K1 and K2 expressions of the
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type (5.55), but without the factor (X/6)2 . Since the interval A is

relatively small for rare earth ions, on the order of 10-100 cm-1 , the

spin-lattice interaction turns out to be very strong, in spite of the

fact that r0 for 4f electrons is somewhat smaller than for the valence

electrons of the iron group. In ions with an odd number of f electrons,

the spin-lattice interaction due to the direct processes turns out to

be particularly large if a nonKramers degeneracy of the ground level

exists. In this case we have

KI. ()' (g (5.58)

Here the matrix element of the spin-lattice interaction differs from

zero even in the first approximation of perturbation theory.

7. Great interest is attached to an explanation of how the spin-

lattice interaction is changed if the concentration of the paramagnetic

particles is decreased by isomorphically replacing them with diamag-

netic ions. This question was considered theoretically by Kochelayev

(112].

It would seem at first glance that relaxation due to the Kronig-

Van Vleck mechanism should not depend on the concentration of the para-

magnetic particles, since the forces bringing about the spin-lattice

coupling are determined by the relative displacement of the paramag-

netic ion and the diamagnetic atoms surrounding it. Actually, however,

an appreciable role can be played by the following circumstance: prac-

tically any specimen contains crystal-lattice imperfections, on which

the plane Debye waves are scattered.

Under the influence of the standing plane Debye wave, two neigh-

boring atoms oscillate with amplitudes whose difference is proportional

to the frequency v of the elastic oscillations. Since the probability

I of the relaxation transition is proportional to the square of the rela-
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tive displacement of the paramagnetic ion and of the neighboring dia-

magnetic particle, we find .n the case of direct processes, in accord

with (5.45), that A1 - Ek. After the Debye wave is scattered by the

randomly located paramagnetic center, a spherical wave is produced

around this center, with an intensity that increases rapidly, of

course, as it propagates. Consequently, two neighboring atoms located

at distances r and r2 from the scattering center will oscillate with

amplitudes whose difference is proportional to (1/r1 - 1/r 2 ). In spite

of the fact that the intensity of the scattered waves is much smaller

than the intensity of the plane Debye waves, simple calculation shows

that over a wide range of paramagnetic particle concentrations and at

reasonable values of the defect concentrations, the relaxation due to

the scattered spherical waves plays the principal role if the ampli-

tude of the scattered wave is independent of the frequency. Besides,

whereas in accordance with the ordinary spin-lattice relaxation theory

we have A1 ~ now, by virtue of the fact that the relative dis-

placement of the neighboring particles is independent of the frequency

v, the relaxation probability will be A1 1 En 2 . As we have seen above,

in many cases n = 2, and consequently the dependence of the probabil-

ity of relaxation transitions between spin levels Ek and E on the

magnitude of the interval Ekl should dispppear. When the number of de-

fects in the crystal is small and when the crystal is strongly diluted

by diamagnetic ions, the Kronig-Van Vleck relaxation mechanism will

again predominate.

According to the views developed here, the spin-lattice interac-

tion should also be appreciably influenced by such crystal lattice im-

perfections, whose dimensions are comparable with the length of the

C incident wave.

The theory developed here is applicable in the case of low tem-
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1 , 2peratures, when the relaxation is due to sin-

t, gle-phonon processes. At high temperatures,

when the relaxation is determined by two-

phonon processes, the principal role is as-

3 Pw sumed by the phonons with high frequencies v,

Fig. 5.2. Scheme and consequently the spin-lattice interaction
showing the transfer
of energy to the due to the waves scattered by the imperfec-
lattice vibrations
in the case of tions ceases to predominate.
strong exchange in-
teractions l) Zee- 8. Akhiezer and Pomeranchuk [47] have
man; 2) exchange; 3)
lattice. considered the question of paramagnetic re-

laxation at super low frequencies by the method of elementary excita-

tions. They have proposed that the paramagnet is a nonconducting crys-

tal containing ions with an odd number of electrons. The spin system

of the paramagnetic crystal has a spectrum whose form is determined by

the crystalline electric field and by the magnetic and exchange inter-

actions between the individual lattice ions. Deviations from the ground

state of the spin system, a state which occurs when T = 0, are re-

garded as an assembly of elementary excitations, which, as in the case

of the Bloch model of the ferromagnet, propagate over the entire crys-

tal. Each elementary excitation represents a quasiparticle which can

be assigned a definite energy and a certain quasimomentum. The calcu-

lations were made under the assumption that the quasiparticles obey

the Fermi-Dirac statistics. Because of the interaction between the

elementary excitations and the lattice vibrations, energy is exchanged

between the spin system and the lattice. By calculating the probabili-

ties of the collisions of the quasiparticles among themselves and with

the phonons, one determines the amount of heat Q which is transferred

per unit time from the lattice to the spin system. It was found that

Q = const T6q (T /TI), where the function q(T./Tl) is inversely pro-
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portional to (Ts/TI)6 when Ts << TI and proportional to 1 - Ts/TI when

T T. If initially T1 >> Ts and T. ~ 10- K, then, as shown by cal-

culation, the time after which T1 and Ts differ by 1% does not exceed

1 second.

9. If the exchange interactions are very large (anhydrous para-

magnetic salts, free radicals, ferrites), then it is necessary, as

shown by Blombergen and Wein [48], to divide the spin system into two

parts, a Zeeman part and an exchange part.

The scheme whereby energy is transferred from the Z system to the

lattice is shown in Fig. 5.2. Each of the three subsystems can be as-

signed a certain temperature. Let us denote the temperature of the Z

system by TZ, the temperature of the Ex system by Te, and the lattice

temperature as before by T1. The possibility of introducing separate

concepts of Zeeman and exchange temperatures is connected with the

fact that the operators of Zeeman energy (5.6) and exchange energy

(5.8) commute. Therefore changes in the Zeeman energy can occur with-

out affecting the exchange energy. The transfer of energy from the Z

system to the Ex system is possible because of the existence of rela-

tively weak magnetic dipole interactions which do not commute with

Hzeem and Hobm .

It can be assumed that direct transfer of energy from the Z sys-

tem to the lattice has low probability and consequently the relaxation

time Tzl is large compared with the times T ze and Tel. Let us denote

by aze and ael the corresponding heat conduction coefficients, and by

Cz and Ce the specific heats of the Z and Ex systems. To explain the

experimental data it becomes necessary to assume that aze < el and

C << C.z e
"Inasmuch as the relaxation time is determined by the ratio of the

specific heat to the corresponding heat conduction coefficient, it
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turns out that Tze < T el" Therefore T ze plays the role of the spin-

lattice relaxation time for ordinary paramagnetics. It is remarkable

that the independence of T ze of the lattice temperature is confirmed

in experiments on saturation. Under stationary conditions the amount

of heat transferred from the Z system to the Ex system is equal to the

heat flowing from the Ex system to the lattice, i.e., aze(Tz - Te) =

= ael(Te - T1 ). It follows therefore that Te is much closer to T1 than

to Tz.

§5.4. Longitudinal Relaxation at Low Temperatures

1. It follows from the theory of spin-lattice relaxation due to

single-phonon processes (§5.3) that the relaxation time T, which is

inversely proportional to the temperature T, decreases with increasing

applied field H0 and is generally speaking independent of the concen-

tration of the paramagnetic centers and of the crystal dimensions. Yet

many experiments [49-53) have established facts that are in direct

contradiction with all these theoretical conclusions. Moreover, it was

observed that in place of one time it becomes necessary sometimes to

introduce a whole set of relaxation times. In spite of all these con-

tradictions, there are no grounds for doubting the correctness of the

theoretical choice of the mechanism of spin-lattice interaction. At

least in some cases, these singularities of the relaxation occurring

at helium temperatures can be explained as follows.

In the analysis of relaxation processes it is always assumed that

the lattice vibrations can be regarded as a thermostat in which the

spin system is embedded. The specific heat of the spin system was al-

ways considered to be small compared with the specific heat of the lat-

tice. Yet if the temperature of the spin system is higher than that of

the lattice, then establishment of equilibrium with the aid of single-

phonon processes will occur by exciting oscillations in a narrow fre-
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quency band, satisfying approximately the condition (5.44). The spe-

cific heat of these low-frequency lattice oscillators, which are in

direct contact with the spin system, is low. The speed with which the

energy acquired by these "effective" oscillators is transferred either

to the oscillators of other frequencies or to the helium thermostat

surrounding the crystal is therefore important. Let us denote the tem-

perature of the spin system by T., the temperature of the "effective"

oscillators by TZ, and the thermostat temperature by T0. If the energy

transferred to the "effective" oscillators is drawn away sufficiently

rapidly so that the relation Ts - Tz >> Tz - T holds true for the tem-

perature differences, then the bottleneck in the chain linking the

spin system with the thermostat will be the contact between the spin

system and the lattice, and consequently the longitudinal relaxation

time T1 will be equal to the time T. If on the other hand the station-

ary processes of striking the balance between the spin system and the

thermostat is such that Ts - Tz << TZ - To, then along with the spin-

lattice relaxation time T it is neces6auy to Lntroduce a time charac-

terizing the exchange of energy between the "effective" oscillators

and the helium thermostat (or with the oscillators of other frequen-

cies). We shall denote this time T1 , since it will now determine the

longitudinal relaxation, inasmuch as T1 >> T.

2. For what is to follow, it is necessary to calculate the number

Nf of "effective" oscillators per unit volume. Were the energy spec-

trum of the spins and lattice oscillators a discrete one, then the

number of oscillators participating in the energy exchange between the

spins and the lattice would be infinitesimally small. Actually, how-

ever, owing to the spin-spin interactions on the one hand, and the

finite lifetime of the oscillators in the excited state on the other,

the energy levels become broadened. We shall see that the most appre-
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ciable broadening occurs in the vibrational levels. We denote by 2AvL

the frequency interval of the oscillators that interact strongly with

distance. In accordance with the usual law governing the distribution

of the frequencies of elastic lattice vibrations, we can assume that

N 1 -d2- (AvL). (5.59)

The value of AvL can be estimated in the following fashion. We assume

for simplicity that the effective spin of the paramagnetic particles

is 1/2. Then, according to (5.40), the probability per unit time A1 of

transition between the spin energy levels under the influence of the

lattice vibrations is connected with the time T by the relation A1

= 1/2 -1. Each of the No spins contained per unit volume can exchange

one phonon with each of the Nf oscillators within a time 2T. Therefore

the oscillator vibrations will be interrupted in the mean after time

intervals

At2

Since AvL = 1/2rAt, it follows from (5.59) that

L(5.60)

By way of an example let us assume that No = 1019 cm
-3 , v = 2.105

am/see, and v = 1010 cps, and 2T = 10 - 5 sec; then AvL = 4.108 cps,

which is much larger than the frequency interval 4NoP2/h, connected

with the spin-spin interactions. The number of "effective" oscillators

in our example is, in accord with (5.59), Nf - 5.1014 cm-3 . We see

4that there are approximately 10 spins for each effective oscillator.

It is clear that the specific heat of the "effective" oscillators is

negligible compared with that of the spin system. Therefore, if T1 >> T,

then the establishment of the thermal equilibrium between the spin sys-

tem and the aggregate of the effective oscillators will consist of hay-
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ing the "effective" oscillators assume the spin temperature, Tz -* Ts.

It can be shown that in this case the "effective" oscillators are di-

rectly coupled to the spin system.

We note that the formulas obtained are valid if kTs << hv. On the

other hand, if kT >> hv, then it is necessary to introduce in place

of No the difference in the populations of two neighboring spin levels,

i.e.,

X ,"

3. What is the mechanism determining the longitudinal relaxation

if T > -r? Equilibrium between the spin system and a helium thermostat

can be established in various ways. Frelikh and Heitler [54] have

shown that the heat conductivity of the spin system is very small.

Therefore direct transfer of energy from the spin system to the ther-

mostat is of low effectiveness. This can be readily understood by rec-

ognizing that the rate of propagation of the spin-system excitations

(magnons) in substances that do not have too high a concentration of

paramagnetic centers is much smaller than the velocity of sound: v >>

>> 02/hr2 (see §5.1).

Two possible mechanisms remain: a) the transfer of the energy of

the "effective" oscillators to all other lattice vibrations; b) direct

transfer of energy from the "effective" oscillations to the helium

thermostat. Van Vleck [55] considered mechanism a), and took the an-

harmonicity of the lattice vibrations into account. Let dQ/dt be the

quantity of heat transferred per second from the "effective" oscilla-

tors to the remaining lattice vibrations. Then

dQ
W b(Tr- r.T (5.61)

where b is the heat conduction boefficient, equal to

ho VI 1 15 819(5.62)
[(A -5 A
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If we denote by AV the change in the volume V of the crystal under the

influence of the pressure p, then the mean of the coefficients A and B

becomes clear from the following formula:

V(5.62a)

For potassium chrome alums [56] A = 6.3"10- 12 cm2 /dyn and B = 1.08 x

x 10" 2 cm4/dyn2. If we return to the numerical example considered in

this section and assume furthermore that the specimen is in the form

of a sphere of radius R, we obtain with the aid of (5.62) b = 2.10- 4 x

x R3 w/deg.

In order to estimate the effectiveness of mechanism b), let us

assume first that the elastic waves are not perturbed at all, with

the exception of interaction with the spin system and the walls of the

crystal [57]. The case which we are considering is most favorable for

the penetration of heat from the thermostat inside the specimen. Let

us imagine a spherical cavity in which the elastic waves striking the

wall have a temperature Tz and the waves radiated by the wall have a

temperature T0 . If u(T) denotes the energy density of the "effective"

oscillations at temperature T, then each unit surface of the wall will

absorb per second an energy vu(Tz)/4 and radiate an energy vu(To)/A.

If the difference Tz - T0 is small, then

U(Tz) -- U (To) = Nk (z--- T,),

and consequently the heat transferred per second by the "effective"

oscillations to the helium thermostat is a(Tz - TO)$ where the heat

conduction coefficient is

4 ==w N, k. (5.63)

Substituting the previous values of Nf and y we obtain a - 410-3R 2

w/deg.

The longitudinal relaxation time T1 can be defined as the ratio
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of the specific heat of the spin system Cs to the heat conduction co-

efficient of the channel coupling the spin system with the thermostat.

If we take both mechanisms a) and b) into account, we obtain

7(5.64)

If S' = 1/2, then [34]

c, --NV hV ' (5.65)
TF

In the example which we have considered a/b >> 1 and consequently

mechanism a) is much more effective than b). In this case we obtain

with the aid of (5.63)-(5.65)

= (F .,)" ( -- )',R. (5.66)

If kTs << hv, then obviously

FOI-jR. (5.66a)

Substituting again the previous values of the quantities used in our

example, we obtain T1  10- 2 sec.

If the mean free path of the "effective" phonons is small compared

with the linear dimensions of the crystal, then the mechanism which we

have described for the transfer of energy from the effective oscilla-

tions to the thermostat will be disturbed by diffusion processes. The

mean free path of the phonon, the path of which is interrupted by col-

lision with a magnon, is of the order of -vT. Therefore, if R >> vT,

the phonon diffusion processes begin to play a predominant role in the

transfer of energy from the spin system to the thermostat. An estimate

of the longitudinal relaxation time made for this case (58] has shown

that for hv << kTs its approximate value is

T R'h' (5.67)

We note that in this case one cannot, strictly speaking, define a sin-
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gle relaxation time. The temperature of the spin system and of the ag-

gregate of "effective" oscillators will vary from the center of the

crystal toward its boundary. As a result, a certain distribution of the

relaxation times is produced.

The formulas which we have obtained for the longitudinal relaxa-

tion time apparently permit an explanation of the experimental facts

concerning the character of the dependence of T1 on the concentration

No of the paramagnetic centers, on the temperature T., on the dimen-

sions R of the crystal, and on the intensity of the applied field H0

(of frequency v).

Longitudinal relaxation at low temperatures has not been suffi-

ciently well investigated experimentally. The discussion that arose in

an examination of this question [59, 603 in connection with the de-

velopment of paramagnetic amplifiers (see Chapter 8) has thus far not

led to any definite results (see §5.9).

§5.5. Experimental Data on Ionic Crystals

1. Line width in solid paramagnets

Various types of interactions in paramagnets are experimentally

investigated either by determining the width and the shapes of the

paramagnetic resonance lines, or with the aid of a method that makes

use of the saturation of these lines. In addition, information on the

spin-spin and spin-lattice relaxation times is obtained by measuring

parametric absorption and the dispersion of susceptibility on super-

position of a static field and a high frequency magnetic field paral-

lel to it.

By line width H we mean the distance in oersteds between the

points on the X"(Ho) curve at which X" has a value equal to half the

maximum. In some papers the width is defined differently, as the dis-

tance in oersteds between the points of inflection of the X"(H0 ) curve.
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Such a definition is convenient when the result of the measurements is

the differential curve dX"/dH(Ho). We shall designate this width 5H.

For curves of Lorentzian shape AH = 1.736H and for Gaussian curves

AH = 1.266H. We note that at measurements at low frequencies it be-

comes necessary to use the definition of a "right half-width," i.e.,

the distance in oersteds between the point corresponding to the posi-

tion of the absorption maximum and the point where X" = X"max/2, which

lies in the region of H0 above the maximum. The "right half-width"

will be designated 6Hpr.

In addition to measuring X"(Ho), the width of resonance lines is

also estimated by measuring the dependences of X' and dX'/dH on the

field intensity HO. In the latter case the difference between the

Lorentzian and Gaussian line shapes can be readily established by de-

termining the ratio of the values of dx'/dH at the maximum and at the

minima of the dX'/dH(Ho) curve. The values of this ratio are 8:1 and

3.5:1 for Lorentzian and Gaussian shapes, respectively [61].

Measurement of the values of AH (or 6H) gives much less accurate

results than a determination of the positions of the lines in the

spectrum. The inaccuracy of the resultant line shape and width, which

is inherent to some degree or another in all the methods used to de-

termine paramagnetic resonance, is due principally to the impossibility

of separating completely the various effects due to the real and imag-

inary parts of the high-frequency susceptibility.

We shall discuss first data pertaining to pure paramagnetic salts,

not diluted by the corresponding diamagnetic ions. The line widths in

these salts range from several tens to thousands of oersteds. The

lines become sometimes utterly unobservable. If we exclude the case of

ions with even number of electrons (in which paramagnetic resonance

cannot occur because of the smallness of the quantum of the radio fre-
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quency field as compared with the initial splitting of the spin sub-

levels), then the absence of the effect can be due only to excessively

strong spin-lattice interactions. A sufficient reduction in tempera-

ture decreases these interactions and makes the effect observable. In

general the narrowing down of the lines upon cooling is the most con-

vincing proof that the spin-lattice interactions determine the line

width.

Another way of elucidating the nature of the observed width is to

study the dependence of AH on the frequency of the absorbed radiation.

In the case when the width increases appreciably with increasing fre-

quency, it is natural to attribute this increase to the influence of

the anisotropy of the e factor; in this case the measurements aimed at

determining the true relaxation line width should be carried out at

the lowest frequencies. Of course, the influence of the anisotropy

manifests itself most strongly in investigations of polycrystalline

specimens; it is not excluded, however, from single crystals, since in

most cases a unit cell contains several nonequivalent magnetic ions.

One of the most important methods of investigating the internal

interactions in paramagnets is to analyze the absorption line shape.

So far, however, this study has been carried out principally by cal-

culating the second and fourth moments of the experimental X"(H) curves

and comparing the results obtained with the Van Vleck line-width theory

[10). That this theory has limited applicability to the greater part

of real crystals was already noted earlier.

Some typical results of measurements of absorption line width and

shape in undiluted paramagnetic salts of Mn2+ are listed in Table 5.1

(62].

From an examination of the data in this table we can conclude the

following:
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1) In magnetically concentrated salts, the line widths are con-

siderably smaller than would '.e expected if only magnetic dipole inter-

actions were taken into account; the line shape is Lorentzian or close

to it. It follows therefore that in such salts considerable exchange

interactions take place.

2) In salts with smaller magnetic ion concentration (for example,

in Tutton's salts of Mn2 + and Cu2 + or in chrome alums), the line shape

is close to Gaussian, and the width deviates little from dipole width;

thus, the role of exchange is no longer large.

TABLE 5.1

2 3
1 Beaec-to (Aa) ('10-P

JPevn 4 Ppem 4 0Ml) T

MnCI. •4H.O 1410 1530 1,23
MnCI3  750 2950 1,40

MnSO 4.4HsO 1150 1560 1,28
MnSO, • H.O 320 2870 1,46

MnSO4  665 3520 1,35
MnCO, (xpscr.) 460 4460 1,43

Mn5.(PO 4), • 3110 465 1246 1,38
MngP,0 7 . 3H.O 1070 1250 1,32
Mn(NOa), • 6H.O 1210 1033 1,31

MnF, 470 7020 1,39
MnS 780 7520 1,40

lI Substance; 2) eksp; 3) teor;
oersted; 5) crystalline.

It must be noted, however, that a study of the dependence of the

exchange interaction on the average distances between magnetic par-

ticles in highly concentrated paramagnets is possible only by compari-

son of substances that have crystal lattices of the same type; other-

wise it is easy to arrive at erroneous conclusions, for at high mag-

netic concentrations it is meaningless to operate with average inter-

ionic distances without taking into account the specific nature of con-

g crete lattices. In particular, it was shown by Kashayev [63], for ex-

ample, that the absorption line in CuF 2 "2H20 is considerably narrower
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than in CuF2, in spite of the fact that the average distances between

the Cu2+ are smaller than in the former salts, and consequently the

exchange narrowing of the lines in the latter salts should have been

more manifest in the CuF2 . The point is that according to crystallo-

graphic data the distance between the nearest Cu2+ ions in CuF2 is

larger than in CuF2*2H20.

From among the substances with strong exchange interactions, let

us stop to discuss CrCl 3, polycrystalline specimens of which were in-

vestigated many times under various conditions. The form of the ab-

sorption line is shown in Fig. 1.2. The value of AH was determined in

the frequency interval between 1010 and l07 cps and was found to be

constant and equal to 140 + 5 oersteds [641 within the limits of meas-

urement accuracy (if it is determined at low frequencies by multiply-

ing the "right-hand half-width" by two). Temperature changes in the

interval from 290 to 770 K do not affect AH. The value of 6H, calcu-

lated following Van Vleck from only the magnetic dipole interactions,

is much larger than the observed value and amounts to 1000 oersted.

The ratio H/6H corresponds to a Lorentzian form.

A good example of a Gaussian form is the line observed by Bleaney

[65], corresponding to the transition 1 - in the spectrum of cesium

chrome alum CrCs(S04 )2 .12H 2 0 with the crystal optical axis oriented

along the field. The width of this line is AH = 280 oersted, and is

shown in Fig. 5.3. The experimental data are marked on the figure by

the points, and the curve is drawn to obey a Gaussian law, with a mean

square width aH = 118 oersted. This last quantity was calculated by

Bleaney after Van Vleck with account of the presence of nonequivalent

Cr3 + ions in the crystal cell. The good agreement with experiment

Zleads to the conclusion that the role of exchange interactions is
small in cesium chrome alum.
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Sometimes the line corresponds to

neither Lorentzian nor Gaussian shape.

In particular, an intermediate form was

obtained by Japanese investigators [66]

for MnS04 "4H20 and MnS04 -5H20. Deviations

from the form expected by the Van Vleck
1

8 1018 4 AV theory have been observed by MacLean and

2+
Fig. 5.3. Shape of the Kor [67] in organic Baits of Mn
(1/2 - 3/2) paramagnetic
resonance line of cesium We shall now stop to discuss the
chrome alum [65]. 1) kilo- measurements of AH in dilute salts, in
oersted.

which some of the magnetic ions are re-

placed by diamagnetic ones. From the point of view of spectroscopy,

such salts are of great interest. It is necessary to note here first

of all that the narrowing down of the lines resulting from the reduc-

tion in the magnetic dipole interactions between the ions is observed

down to sufficiently small relative concentrations of the magnetic

ions (f < 0.01). If the residual line, which is independent of the

further dilution, is not connected with the spin-lattice relaxation,

it is usually due to magnetic dipole interactions with the moment of

the near-lying atomic nuclei, particularly with the moment of the pro-

tons of the water in hydrated salts. Therefore in spectroscopic inves-

tigations the H2 0 is frequently replaced by heavy water D2 0, which

leads to a certain narrowing down of the line as the result of the

smaller magnetic moment of D. During the initial stages of dilution

(for f > 0.1) the absorption lines are weakly narrowed down, and some-

times they may even broaden a little, as was noted in [63]. The reason

for this is that the exchange interactions decrease with increasing

distance more rapidly than the magnetic dipole interactions. Examples

of experimentally determined width in dilute paramagnetic salts are
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TABLE 5.2

2 3 4 ONUN -.,T bP8334. n1o.-  Coone hle
eeXemo""" ""P" R , em, T, "K I .e P"TYPA

(Mn,+, Zn,+) S 10-' 7,5.t0,5 3,2 300-4,2 Mou p. . [68f

(Pr'+, La'+) CI. 10-' 5,5-0,5 3,2 i [68]
8ni. apa.1.1nbHo onTHqe-

CKoR OCH Kplfcra.14a 0,11 25 3.2 4,2 [ (691
9 H. nepneHAHKY.lyPpo'
ontqecoR ocn KpucTAiAa ISO 3,2 4,2 • [691

1) Substance; 2) dilution; 3) half width; 4)
conditions of experiment; 5) state of sub-
stance; 6) literature; 7) monocrystalline;
8) H0 parallel to the optical axis of the

crystal; 9) H0 perpendicular to the optical

axis of the crystal.

listed in Table 5.2.
TABLE 5.3

Information on the spin-spin interac-
________ 2W tions in paramagnets in the absence of con-
VOCi 10,5
voso, 1,85 stant fields H0 can be obtained from abso-

CuCI, .2H,O- 8,65
CuSO, 5H,O 4,05 lute measurements of the absorption coeffi-

Cu (NH,),SO, • H, 15,3
Cu(NO,),.6H,0 2,70 cient at H = 0. Measurements of this type

CrCI, 3,50 0
CrF, 0,77

Cr,(SO,), 0,60 were made for several salts by Gorter [34]
Cr, (OH),. H,O 1,88

_ _ _ (OH~s - 1,88 and later by Rivkind [70]. The values of

1) Substance; 2) sec. -'(0) obtained by the latter at 10 megacycles

are listed in Table 5.3.

2. Spin-lattice relaxation in solid paramagnets

Investigations of spin-lattice relaxation were started by Gorter

[341 even before the discovery of paramagnetic resonance, in the 1930's.

His method consisted of measuring the dependence of the coefficients

X' and X" on the intensity of a static magnetic field H,,, situated

parallel to an oscillating magnetic field of constant frequency v. The

frequency that Gorter used in his experiments was on the order of 106_

f '7
10 cps. A phenomenological theory of spin-lattice relaxation in paral-

lel fields was proposed by Casimir and du Pre (71] for the case T >> r'.
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The phenomenological theory of relaxation phenomena in parallel fields

was further developed by Shaposhnikov [4], who took into account the

role of the spin-spin interactions in the general relaxation effect.

A summary of the experimental values of T obtained up to 1947 by Gor-

ter and his co-workers is contained in his book [34]. Later measure-

ments of T by the method of parallel fields can be found in [72-74, 41]

and elsewhere. We shall note here only the principal results, without

stopping to describe the experiments.

Measurements at temperatures from 300 to 640K were made in hy-

drated salts of the iron-group ions and in salts of Gd3 + . The longest

spin-lattice relaxation times were found in salts of Mn2+, Gd3 + and

crS+; they have an order of 10-7_10 -8 sec at room temperatures. Very

short values of T, which are observed for example in salts of Co2+ or

particularly in salts of Ti3 + could not be measured by the parallel-

field method in the indicated temperature interval, since the condi-

tion T > T' is not satisfied there.

A small number of salts of Mn2 , Fe L - , r 3 +, and o+ and

of a few other ions were investigated in the region of helium tempera-

tures. Their relaxation times are on the order of 10-2_10 - 4 sec.

We shall consider first the region of high temperatures, where

combination processes predominate.

In this region, the dependence of T on H is well described by a

formula proposed by Brons [75], which was theoretically confirmed in a

paper by Van Vleck [37]:

== (5.68)

Here b = CHT2 is the constant of magnetic specific heat, C is the

* Curie constant, T0 is the spin-lattice relaxation time at H0 -* 0; p
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= T 0/O,, where -r is the same time when H0 - oo. According to Van Vleck

p < 1, and therefore the value of T should increase with increasing

field intensity Hit and tend in the limit to T... The temperature de-

pendence is contained essentially in the factor T 0 - T -2 with T e.

Experiment shows, however, that the value of p sometimes varies with

the temperature. The experimental data obtained for the temperature

range from 300 to 640K agree qualitatively in most cases with the

theoretical predictions; the value of T calculated by Van Vleck for

chrome alums agrees with the experimental values also in order of mag-

nitude. Nonetheless one cannot speak of strict agreement between theory

and the experimental data. The main reason for the discrepancies is

apparently the fact that the measurements of the spin-lattice relaxa-

tion time in parallel fields is possible only if T T' whereas in

Van Vleck's theory the spin-spin interactions are taken into account

only very approximately.

Another reason that leads in individual cases to major qualita-

tive disagreements with the theory may be the phase transitions in the

paramagnet occurring as the temperature of the experiment is varied.

In particular, this may explain the reduction in T on cooling, observed

by Garif'yanov [76] in iron-ammonia alum, in which the phase transi-

tion point lies according to his measurements near 2000K.

A similar behavior is exhibited by potassium chrome alum (phase

transition point near 900 K) and also by gadolinium sulfate [34).

Tables 5.4 and 5.4a contain certain data pertaining to the values

of T in the high temperature region (77-300°K), obtained by the paral-

lel-field method.

In the region of helium temperatures, where the direct processes

should predominate, Van Vleck's theory agrees much worse with experi-

ment. In particular, for the direct processes the theory requires that
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TABLE 5.4
Spin-lattice Relaxation Time

f*, 1. C ]W c3 1 5
-- T? I a

Cr (NO),. 91-1,O 0 1,l 2,2 0,7
800 3,2 I,

1800 3,9 1,52 [7212400 5 2,133200 5,a 2,38

>4000 6,3 3,2
CrK (SO,),. 121-1,0 0 0,65 0,- 0,7; 0,-0,25 72

>4000 4,1-2,8; 2,1-2,0 72
0 -. 0,01; -. 0,001(200)176

Cr (NH, (SOOt, X 2,68
X I2, A0

[Cr (H,0).J CI, 0 0,96 2,5
>4000 5 721

[Cr (NH,),] Ci, -320 13 0,2 0,18,
[Cr (H,), C,] Cl X 0 4,5 1,2 !,05011H 0 >4000 1,9 1,

1000 0,04
2000 4,1 0.085 [641
3000 0,13

[CrF,J K, 0 8 019 0,15
1600 0,22 0,18
2400 0,25 0,22
3200 0,28 0,24

lCr (- OOC - 0 27 0,3 0,22
- COO),] Ks 1600 0,32 0,24

2100 0,36 0,27
:P-)0 0,41 0,33

Fe (NO,) • 0)-1O U0 19.5 0,71 0,38 0,8 (64,4)
IWOU 0,73 0,49 1,1 (64,4)
2100 0,34 0,56 1,2 (6-1,4)
:3-:O 0,98 0,69 I,35 (6.1/t) [721

Fe(NH,)(SO4)$ X 0 0,27 0,25 0,04 075(64)

x 12HO 100 0,26 0,042 <0,62(19) 72]

200 0,27 0,046
300 0,28 0,05
400 0,33 0,055
800 0,62 0,I

1600 1,1 0,23
3200 1,79 0,53
4800. 2,06 0,8

Fe (ND,) (SO,), >4000 2,1 0,9 3 (64)o*Nj(O) x 0 0,01 -,o,001(0) 14
X12D.O(930/,D) 0 0,27 0,32 0,08 5 (20 417

>4000 2,2 I 172]
(Fe, Al) (ND,) ,.0 0,27 <0,32 <0,08
(S0)4..12D,O

Od, (SO,),. 8HO 0 3,9 1,6 1,95 0,42
800 1,75 .2,1 0,5

1600 2,1 2,5 0,55
2400 2,5 2,85 0,69
3200 2,8 3,15 0,79

>4000 4 4,2 1,25
Od (CH,- 1600 0,67 0,41 0,11 0,27 (95)

-- COO-)s.4HO 2400 0.71 0,46 0,12A 0,28 (195) [721
3200 0,77 0,51 0.14 0,29 (195)

Od,(-OOC- 0 I,8 2, 1,5 0,24 (195
-COO-),. IOH,0 800 1,75 I.s 0,31195)

2600- *2 2 0,45195
2400 2,7 2,7 0,69 (95
3200 2,95 0,85 (295

>4000 3,6. 3,6 1,5 (9
Od(NO,)p 6HO 800 2,06 0,55

1600 0,72
2400 •0,N
3200 O.96

4000 2l 5000; !,1
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TABLE 5.4 (Conclusion)

1 dClI. 4HO 800 5,1 .053 1741

1600 • 0,59
2400 0,64
3200 0,69
4000 0,72
5000 0075

AnCt, 4HjO S0 19,8 141
1200 ,8L8
102000 1:79

MiiC!, . 41",0 2400 1,94
2800 2,12 [981
3200 2,23600 Z,4

Mn (NOg). 6HO 800 1,2
1200 0,3
1600 0,35 [73]
2000 0,37
2400 0,38 -
3200 0,39

MnSO. .4HgO 0 ,2 4 3,2 0,32 273]K
800 5±2 0,28 [731,

1600 0,37 * •npH

2400 (,47 11113MI
3200 0,.o3 Teune-ax 6

T-1721
Mn (NH,) (SO,) x 0 0,64 5,5 0,40 0,93(195)

x 6H0 290K
>4000 11 0,80 1,85(195) 1981,

npH
1200 0,66 113KHX
1600 0,74 Teune-
2000 0,77 pary-
2400 0,8 6

0,82 171
3200 0,83
3600 - 0,835

NiSO4 . 7H,O 90? 0,1? 0,08' 0,83
Ni (NH,), (SO,), X 90? 0,14 011? (72

x6H,O

1) Substance; 2) oersted; 3) sec 4) other
temperatures, OK (in parentheses); 5) litera-
ture; 6) at low temperatures.

TABLE 5.4a

i Seumecio V,." &, K - C o pol.p

12 ipcm ,7K9K~~ Kv K& jc
CuSO, SH 51 00 0,47 0,01 0,0 0,01 0,00 "ipm 6

p01110K) Temitc-
1 l0 0,4 0,015 0,015 0,014 0,012 paTy ax

(oct /,)I __I 172]

- 258 -



TABLE 5.4a (Conclusion)
Iii. 10'". 34

lDeu ec . IllH. b - Aim.RPcM C-. 7l ' "K PaTypA

2 apems "' . oC eb oCb
20 0 K I K I KA

2400 0,02 0,025 0,023 0,017 rlp. T; 7
0, 0,025 0,03 0,027 0,02 =2-

0 (ocb Q 0,02B 0,033 0,03 0,022 1411

4800 0,03 0,035 0/.12 0,W23
5 0,031 0,036 33 0,024

CuK, (SO),. 6H,O 400 0,12 0,660,43 1lpi 6
(no- 1H3KH

pouox) 08 emne-
0,8 0,48 0,008 0,003 0008 Patya9

ocb K,)P'L
2400 0,15 =290" K

(ocb Ks) 0,9 0,54 0,01 0,01 0,009 1411
3200,01 0,01 0,009

4000 0,01 0,01 0,009
4800 0,0 1 0,01 0,009
5600 0,01 0,01 0,009

Cu (NH,), (SO, X 400 0,18 0,470,28 flp. 6
X6H.O 800 0,16 0,5910,33 0,008 0,008 0,008 .H3KNX

(no- TeMne-
pOIUOK) paTypax

0,16 0,01 0,012j 001 172J,
(ocb K,) 0oi011 14 =7

2400 0,16 0,670,44 0,012 0,030 =290K

3200 ocb k 0,013 0,014 0,012

4000 0,014 0,015 0,013
480 0,014 0,015 0,01.3
50 0,014 0,015 0,013

Remark. KI, K2 , and -3 are the principal mag-

netic axes of the crystal, see §4.1.

1) Substance; 2) oersted; 3) sec; 4) litera-
ture; 5) powder; 6) at low temperatures; 7)
at T = 2900K.

T be proportional to H02 and T-1 ; in addition, naturally, there should

be no observed dependence of T on the magnetic concentration N0. Yet,

according to [77], experience shows in concentrated salts a stronger

dependence on the temperature than T-1 , and the dependence on H0 can

be expressed up to rather strong fields by means of r - (b + CH2).

Finally, an increase in T is observed in most cases upon dilution*
~1

(T - N-1). Moreover, for concentrated salts the Casimir and du Pre

formula itself is not in good agreement with the experimental results.

They can be described satisfactorily only with the aid of an entire

set of values of T. However, when the magnetic dilution of the speci-

mens increases, the deviations from the Casimir and du Pre formula de-
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crease. The dependence of T on the concentration also becomes weaker,

and at sufficient degrees of dilution the relaxation time becomes con-

stant.

The dependence (HO ) has a complicated form in dilute specimens.

At small values of H0 the relaxation time increases with the field but

reaches rapidly a maximum (corresponding to several hundred oersted),

after which T becomes approximately proportional to H01 . Thus, in di-

lute paramagnets the deviation from the theory turns out to be some-

what smaller, but is nevertheless not completely eliminated.

TABLE 5.5

Spin-Lattice Relaxation at Low Tem-
peratures [72]

1 BeUlecT3 T. "K Hi.g 2wJos 4 l.Iemo

KCr (SO,).. 12H-O 20,4 4000 0,21 nornioueHe a na-

14,3 4000 0,31 pa.lncAbHMz no.sUx
Gd, (SO,),. 8H,0 20,4 800 0,0054 2lncnepcu socnpn-

1600 0,006 .a'.u4'OCTH 8 napas.
2400 0,0074 aCabiwx nomzx
3200 0,009
4000 0,012 6

MnSO, • 4HO 20,5 670 1,37 r1ornouleHne H AHC-
1120 1,52 nepcua a napas-
1685 1,82 JIeJbNdx nOJXX
2250 2,13
3370 2,64
4030 2,78

18,4 670 2,56 7 To we
1120 2,82
1685 3,30
2250 3,90
3370 4,90
4030 5,12 6

14,4 670 9,3 flornote .en N AMC-
1120 10,5 nepCSI Ba napaz-
1685 12,5 aeJlbHbtX noift
2250 14,5
3370 18,2
4030 19,0 6

Mn (NII,). (SO,), x 20,3 0 1,06 Flor.omtemie If AHC-
X611'O -. 00c 2,47 nepcsu 8 nsapau-

14,3 0 5,86 ,IC.IbHMX HO.111
-- o 13,6

4,21 0 50,3
-. c'. 117

1) Substance; 2) oersted; 3) sec; 4)
method; 5) absorption in parallel
fields. Dispersion of susceptibility
in parallel fields; 6) absorption and
dispersion in parallel fields; 7)
the same.
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TABLE 5.5a

Average Spin-Lattice Relaxation Times at Low Temperatures [72)

2 2 apcm 3

t (SOJ),.12,O
OAPa3ett A 790 2,48 - 4,04 450 12,2

2250 5,1 - 4,04 675 15,9 -

3370 6,7 - 4,04 112) 36
790 9,8 - 2,58 4 O6pa3e B 450 1,82 4,02 4,08

2250 19.,5 - 2,58 675 2,29 3,53
3370 2.3,5 - 2,58 1120 5,72 3,49

1685 11,8 2,83
790 20,0 - 1,95 2250 15.9 2,50

2250 36,3 - 1,95 3370 27 2,32
3370 44,1 - 1,95 4500 36 1,68

8 710 1,6 1,3 2,68 450 8,5 2,12 2,98
4 6pu0 ,6 1,3 2,68 675 14,9' 1,41

2480 36 1,29 2,68 1120 29 2,24
3100 42 1,34 2,68 2250 83 1,62

710 125 1,0 1,34 3370 133 1,472480 29 1,28 1 ,34 4500 380 | ,33
3100 34 1,27 1,34

K,Cu (SO,),. 6HO 225 30 1,6 4,015 4 O6pl3eu C 225 2,9 2,96

340 40 1,5 450 4,6 2,01

450 .45 1,4 675 7,5 1,98

657 50 1,3 1120 15,5 1,74

226-33 2,16 1685 31,7 1,8

226-39 1,0 113 11 1:2 2,32
2S6-428 210 2,1 225 13,1i 1,48Cu (NI,). (SO,), •61,O 2 -2 212,8450 39,2 1.63

286-428 240-250 0,97 675 26,7 163

Fe (NH,) (SO)s 12HO 320. 58 ,53

4 O6pa3eu A 2250 2,40 1,24 3,61 1685 100 f,27
3370 4,78 3,27 3,61
4500 7,58 1,33 3,61 Gd (SO)," 8HO 1120 25 4,15

450 0,98 1,00 3,00 1685 29
675 1,50 ,11 3,00 2250 37

1120 3,01 1,14 3,00 3370 45
1685 5,74 1,21 3,00 4030 55
2250 9,90 1,30 3,00 570-851 44--50 2,16
3370 18,0 1,31 3,00 570--851 314 0,99
4500 26,9 1,40 3,00

450 2,10 1,21 2,51
675 3,38 1,11
1120 5,78
1685 11,3 1,27
2250 19,1 -
3370 42,0 -

113 4,26 - 1,89
225 4,46 -
450 6,58 1,16
675 8,70 1,15

1120 18,7 1,17
22.5 9,0i 1.61

Remark. In order to calculate these data, which were obtained by ea
uring X'(HO) and X"(H0 ) in parallel fields H , the factors (1 + W2 s1-

and (l + T22)-l in the Casimir and du Pre formulas have been replaced
by S-r- .' d and Sl+'-' d,, with g('T)dT 1. " denotes the mean value

of T in the continuous distribution g( ); T1/2 denotes the value of T

given by the relation g(T 1/2 ) = g(T)/2; the ratio T1/2/ characterizes

the width of the distribution of the relaxation times.

1) Substance; 2) oersted; 3) sec; 4) sample.
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Tables 5.5 and 5.5a list some data obtained by Gorter and his

co-workers [72] in measurements of paramagnetic relaxation in the

region of helium temperatures.

Along with the method of parallel fields, the relaxation time has

been measured in recent years by the method of saturation of the para-

magnetic resonance line. In this case it is possible to use in principle

much greater magnetic dilutions. In addition, the saturation method

makes it possible to determine the relaxation constants for individual

resonance transitions, whereas the method of parallel fields gives

only summary quantities. On the other hand, the saturation method is

not free of shortcomings; it is very difficult to use it for the de-

termination of the dependence T(H 0 ) since this calls for measurements

over a wide range of frequencies; to study short relaxation times it

is necessary to use an oscillating field of very large power; finally,

the experiments themselves are much more difficult to set up than in

the method of parallel fields.

The first relaxation measurements by the saturation method were

made in 1949 by Schlichter and Purcell [78] in undilutea salts of Mn
2+

and Cu2+ at room temperature and at the temperature of dry ice. The

sample was placed in a resonant cavity used to terminate one of the

arms of a T-bridge. To generate the strong microwave magnetic field

(with an approximate amplitude of 30 oersteds) needed to saturate the

broad absorption lines, a pulse magnetron was used. In view of the

transient effects connected with short pulses, the ordinary bridge

technique was somewhat modified. The relaxation times T1 for

Mn(NH 4 )2 (S04 )2.6H2 0, the sulfate of Mn 
2+ , and the sulfate of Cu

2+

were found to be on the order of l0- 8 sec.

Schneider and England (79] measured T2 in a specimen of ZnS with

a small content of Mn2+ at 900K. Since the absorption lines were nar-
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row, experiments on the saturation were carried out with an ordinary

klystron as a source of microwave field. The measurements were made at

the temperature of liquid air and have led to values of the spin-lat-

tice relaxation time close to those observed by Gorter in undiluted

salts of Mn

Eschenfelder and Weidner [80] carried out saturation experiments

in single crystals of dilute potassium chrome alum and iron ammonia

alum at 2_4 0K. The measurements were made by the reflection method us-

ing a T bridge. The source of the microwave field was a klystron with

1 watt output power. A toroidal sample of the substance was placed in

a cylindrical cavity coupled to a waveguide. To ensure thermal insula-

tion, part of the waveguide was made of glass coated with a thin layer

of silver.

The spin-lattice relaxation time was determined with the aid of

the formula

Here QM and QL are the Q factors of the cavity with and without mag-

netic losses, B is a certain constant,

A= 4j2S+)k

r is the reflection coefficient at the resonant value of the field H =

= Hrez' r0 the same quantity at H >> Hrez, Pi is the incident power,

and

QM (I - r)
IF=-(r-r,),

From the experimental dependence r(pi) it is possible to deter-

mine the spin-lattice relaxation time T1 = 1/2W, where W is the proba-

bility of the relaxation transitions. It is most convenient to do this

by plotting the quantity QM/QL as a function of Pi(l - F)2; the slope
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of the resultant line makes it possible

rr Crf.-- to determine TTI independently of g(v).

sec /"10(/#) The basic results obtained for

S ,KCr(SO) 2 .12H2 0 and Fe(NH4 )(S0 4 )2 .12H20

- - Fl are shown in Fig. 5.4. On the right side

, 9IV-- of this figure are indicated, for bothIPJO(Itl).&4

salts, the corresponding resonant trans-

- 2 8 4 s. itions, the magnetic dilutions, and the

Fig. 5.4. Results of meas- crystal orientations. It is seen from
urement ofd the tempera- the figure that, in accordance with the
ture dependence off the
relaxation time Ti by the theory, the time T1 is inversely propor-

saturation method for
KCr(SO4 )2 .12H 20 and tional to the absolute temperature. The

Fe(NH4 )(SO 4 )2.12H2 0 [80]. magnetic dilution investigated in iron-

ammonia alums lengthens the time T1 by only a very small amount.

Bloembergen and Wang [48] continued the experiments of Slichter

and Purcell on the study of the spin-lattice rolaxation time in sub-

stances with broad absorption lines, using pulse techniques. Their

setup made it possible to obtain in the resonant cavity a microwave

magnetic field with a pulsed amplitude up to 50 oersted. The following

relation, which is derivable from Bloch's formula (5.1), holds true

under paramagnetic resonance conditions:

I +-T 7HII, Ts

Here X" and XO are the absorption coefficients for the given amplitude

H. and when H1 - 0, i.e., in the absence of saturation. If the value

of y and the width of the resonance line are known, then the time T1

can be determined either by measuring X"/X0 or by measuring MZ/MO at

different amplitudes H1 . Measurements carried out by both methods in

4 MnSO4 .4H2 0 have shown good agreement with Gorter's data, as can be

seen from Table 5.6.
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TABLE 5.6
Relaxation Time in MnSO4 *4H20

1 M,oz 1 3V I 7rK

2 Hepesoiiakcla. AHC- 41 4
nepcHA ........ . 1,0. 10-' ceK 1,3. 10- 6 cew

3 HIciuterne ...... .0,78. 10-' J 1,2. 10-4 3

1) Method; 2) nonresonant dis-
persion; 3) saturation; 4) sec.

There is no doubt that extensive use of the saturation method

will add in the very near future to the far from sufficient experimen-

tal data on the spin-lattice relaxation times in crystalline paramag-

nets.

An appreciable step forward toward the study of relaxation at low

temperatures was made in a recent work by Giordmaine, Alsop, Nash, and

Townes [58]. These authors measured the relaxation times in

Gd2Mg3 (NO3 )12.24H 20; K3Cr(CN)6 and Cu(NH4 )2(S04 )2 .6H20 at temperatures

1-40K. Two methods were used: 1) the ordinary method of paramagnetic

resonance line saturation, and 2) saturation of the lines by strong

microwave pulses with subsequent measurement of the rate of reestab-

lishment of equilibrium by observing the absorption of a weak micro-

wave signal as a function of the time elapsed after the cessation of

the strong pulse causing the saturation. This observation was made

with the aid of a synchronized frequency sweep of the vicinity of para-

magnetic resonance by means of two different klystrons. The pulses

were usually repeated at a rate considerably smaller than the relaxa-

tion rate. The time between the saturation and the instant of measure-

ment of the absorption can be readily varied by changing the difference

in the frequencies radiated by the strong and weak generator or by

4 changing the sweep rate. The relaxation times determined with the aid

of both methods turned out to be close to one another, with the excep-
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tion of the copper salt. The obtained values of T1 together with the

data on the line width are presented in Table 5.7.

For the Gd3 + salts, the observed width is connected with hyper-

fine interactions, and the times T1 vary as functions of the studied

transition by approximately two times. They depend also somewhat on

the specimen chosen, on the concentration of the Gd3 + ion, and on the

temperature.

TABLE 5.7
1 2-3. Ip- 5

BculemTUo lfarlilT- Uis its.
gamnr . 1OUPIIII& H3gII f 10 11C13. C tlCllh

(Notiteitpaittin E- I : 100 IT. I) 1 Pa3a- .lUlp Mann| 9KCnO1 l llli3 b. WC i ig11*I|I.
II IlepeXOA RITesb MaJIbIIOB mInTe, UIIOrO , Celt C

CHEIOCTf)

Gd,Mg&(NOs)1,. 24H.O La 2,0 7.1 0- 15-10-'

KsCr(CN). Co 12 3. 10-' 4. 10-'

Cu(NH,) (SO,), • 61,0 Zn 20 20 2

and transition; 2) diamagnetlc diluent; 3)
AH, oersted (width at half the maximum in-
tensity); 4) T1 determined from the time of

exponential decrease, sec; 5) TI determined

from saturation, sec.

§5.6. Solutions of Paramagnetic Salts. Theory

1. Until now, calculations of the line shape of paramagnetic reso-

nance in liquids have been made with the aid of the correlation theory.

The use of the correlation method is quite natural, since it permits

the simplest evaluation of the effect of Brownian motion of the par-

ticles on the width of the absorption lines. We shall describe briefly

Zthis method and its application to calculations of the broadening of
resonance lines.
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Let F(t) be a certain random function of the time, the mean value

of which is denoted <F(t)>. Let us assume that <F(t)> = 0. The corre-

lation function, as is well known (81],is defined as

(5.69)

Let us introduce the Fourier transform I(v) of the correlation func-

tion defined in the following fashion:

)---- ( -2 .dr (v) - ). (5.70)
2n

The correlation function obviously decreases with increasing T. For

most cases considered below, it can be proved that the decrease in the

correlation function with time obeys the Markov law:

III
K()=(jF(t)j'>e ', (5.71)

where rc is a certain parameter called the correlation time. Substit-

uting (5.71) in (5.70) we obtain

I 6____(IPow>_
2)=-a +I )I'> +4' • (5.72)

Assume that we have a quantum system with energy levels El, sub-
A

ject to the action of time-varying random perturbations H'(t). The

matrix element of the perturbation Hlk(t) will be a random function of

the time. Using the ordinary theory of time-dependent perturbations we

can readily show that the probability of the transition of a quantum

system from the state El to the state Ek under the influence of the

perturbation A'(t) per second is

A,( ' '(,,a). (5.73)

With the aid of (5.72) we obtain alternately

A,, = .Y I i ,,, (6) 12 2", ., + U,,,11f. 5.4
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For further calculations it is necessary to clarify the nature of the

relaxation mechanism, or in other words, the origin of the perturba-

tion H'(t).

2. The first theory of paramagnetic resonance line shape in liq-

uids was proposed by Bloembergen, Pound, and Purcell [82]. To be sure,

this paper dealt specifically with nuclear resonance, but its results

can be directly applied to liquid electronic paramagnets. In the theory

of Bloembergen et al, as was done by Waller in the case of crystals,

it is assumed that the relaxation is due to magnetic interactions of
A

the particles. Consequently, the perturbation H'(t) can be expressed

with the aid of (5.9), assuming that r, Y, and p are time-varying as a

result of Brownian motion. Let us assume that all the Zeeman levels of

the magnetic particles are equidistant, so that there is only one Lar-

mor precession frequency vO. If we calculate the nondiagonal matrix

elements A'(t), carry out the necessary averaging, and then substi-

tute the resultant expressions, for Alk in (5.40), we obtain for the

time of longitudinal relaxation

+ --
T5 l' S+II+ rl ~ (5.75)

k

If r is the distance between two interacting particles, then we must

assume the correlation time to be the average time necessary for this

distance to double as a result of Brownian motion. Thus, the quantity

vc will naturally be a function of r, namely Fc = r2/12D, where D is

the diffusion coefficient, the value of which is, by Stokes' formula:

D- k, (5.76)

Here a0 is the radius of the particle and I the viscosity coefficient.

Recognizing that the inequality 27rvT c << I holds true for all par-

ticles that are sufficiently close to one another to make their inter-

action significant in the relaxation process we obtain from formula
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(5.75), after replacing the summation by integration with respect to r,

= 8:,00'N s (S + ) (5.77)?Vi =  'kT "

Bloembergen, Purcell, and Pound took account also of the influ-

ence of the Brownian motion on the magnitude of the transverse relaxa-

tion time. This question was subsequently investigated in detail in

(30-32]. An estimate of the transverse relaxation time due to magnetic

interaction of the particles can be carried out in accordance with the

following formula:

_iacgi °s K,> = c~+1 5.78)

If 'c << T2 1 we obtain from (5.78), after carrying out the transforma-

tions involved in going over from (5.75) to (5.77),

I =48x' g''NeiSS+1
14, -(5.79)

By way of an example let us point out that for an aqueous solu-

tion of a salt of divalent manganese we obtain for No = 6.1020 cm
-3

from (5.77) a value l/T1 = 4.109 sec
"I .

It must be borne in mind that at large paramagnetic-ion concen-

trations the line shape can be appreciably influenced also by exchange

interactions. However, experiments on paramagnetic resonance in ionic

solutions are set up for the most part at such low magnetic-particle

concentrations that the relaxation mechanism is determined no longer

by magnetic or exchange interactions.

3. From an analysis of the experimental data on paramagnetic ab-

sorption in solutions, Kozyrev (83] arrived at the conclusion that the

solvate complex formed of the paramagnetic ion and the dipole mole-

cules of the solvent surrounding it has so high a stability, that it

Z can be regarded in experiments on paramagnetic resonance as a unique

type of "microcrystal." Therefore the "spin-lattice" interactions in
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solutions turned out to be in many respects analogous to those occur-

ring in solids. The "spin-spin" share of the absorption line width is

connected with the fact that the "microcrystals" are randomly oriented

in the solution; this should lead to a broadening of the line due to

the possible anisotropy of the g factor, and also because the split-

tings of the spin levels by the "crystalline" electric field depend on

the orientation of the "microcrystal" in the external field HO.

McConnell [84] considered the following relaxation mechanism,

connected with the presence of stable solvate shells. When the "micro-

crystal" rotates under the influence of the Brownian forces, the in-

tervals between the spin levels of the paramagnetic ion change. There-

fore energy will be exchanged between the paramagnetic ions and the

Brownian motion when the "microcrystal" rotates.

McConnell carried out calculations for the Cu2+ ion, for which he

assumed the following spin Hamiltonian:

==P[g.91 ,S, + ±(HS + HS,)] + AI, + B (IS, + IAS, (5.80)

Here r, q, and p are unit vectors of the rectangular coordinate system

rigidly connected to the octahedron of water molecules. XYZ denotes a

stationary system of coordinates; the direction of the external mag-

netic field H0 is assumed to coincide with the Z axis. The spin Hamil-

tonian can be represented in the form

Oto-=d,+Q+ 2 =,+A (5.81)

A

The principal part of the Hamiltonian H0 remains constant in time.

Calculating the matrix elements of the time-varying perturbation H'z(t)

and substituting in (5.74) and (5.40), we obtain

I .8' (AgPH, + bler -kccTI= 15 1 + 4x,,: (5.82)

Ag=g 1-gj, b=A-B.

For the correlation time we can assume an expression that follows from
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the well-known Debye theory [82]:

4rjal (5.83)

McConnell considered also the contribution made to the transverse

relaxation time T2 by the Brownian rotation of the microcrystals, at

which the resonant conditions vary. The broadening of the paramagnetic

resonance lines of a particle whose state is described by the spin

Hamiltonian (5.80) can be described with the aid of the following for-

mula for the time T2 :

A, + b , ctg --' + (5.84)

From formulas (5.82) and (5.84) follow two interesting facts: 1)

the absorption line width should depend strongly on the field inten-

sity H0 ; 2) different hyperfine components of the paramagnetic reso-

nance line should have different widths.

McGarvey [85] extended McConnell's theory to include ions with

S > 1/2. For Cr3 + he assumed a spin Hamiltonian

-PgbS+D[S; S(S+ 1)] (5.85)

and obtained

1 32E'D' [ 8 ' 1
Y - +(5.86)
1 64% D' 2Tc

, W- artg T,,' ( 5.87 )

For the ions Mn2+ and Fe3+, the following term was added to the

spin Hamiltonian (5.75):

f 1)(WS+ 3S (5.88)

Calculations have shown that

I ! ts D2 -6,r + 52, j (5.89)
T, 25 )F1 I I++ OttI I + I16s2i,1V:

I 4 D' ar F-_+_ I 656u.- arc g  ,6: (5.90)
T,=-6 hlarT;F 1"

In the calculation of T I it was assumed that a 0. All the calcu-
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lations were made under the assumption that the f ine components of the

Cr3 + and of the Mn2+ and Fe3+ lines merge into one line.

4. We shall show below that in many cases the experimental data

on the dependence of the resonant line widths on the temperature and

on the intensity of the static magnetic field cannot be explained by

means of McConnell's theory. Al'tshuler and Valiyev [86] proposed that

the principal mechanism that guarantees longitudinal (spin-lattice)

relaxation consists of the following.

In solid paramagnetic ionic crystals, the paramagnetic particle M

together with the nearest diamagnetic particles X usually forms a para-

magnetic complex, for example MX6 (M is the metal ion and X a water

molecule or some other diamagnetic particle), the interactions within

which must be taken into adtount first of all in explaining the mag-

netic properties of the substances. In liquids, the presence of the

solvate shell enables us to make a similar assumption. It can be as-

sumed that, at least for a time longer than the correlation time of

the "spin-lattice interaction," the paramagnetic ion together with the

nearest solvent molecules forms a stable complex, the oscillations of

which can be characterized by a set of normal coordinates Qi: the

Brownian motion of the liquid molecules perturbs the oscillations of

the paramagnetic complex and thereby changes the electric field in

which the paramagnetic particle is situated. These changes influence

the spin-orbit interaction of the electrons of the paramagnetic ion

and consequently can lead to a reorientation of its magnetic moment.

If we expand the matrix element of the "spin-lattice perturbation"

in normal coordinates

J', (qw,( (5.91)

and denote the mean oscillation frequency of the paramagnetic complex
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by vo, we obtain with the aid of (5.74)

AI_ vl" +, +I')t..' ' (5.92)
Here -2 is the average value of the square of the oscillator amplitude,

which can be calculated from the formula (81]:

( Ct ).V (5.93)

where m stands for the mass of the complex. The oscillations of the

paramagnetic complex will be perturbed by the action of the surround-

ing particles, which execute Brownian motion. Therefore the correlation

time is naturally defined as the reciprocal of the damping coefficient

y, which can be estimated from the line width of the satellites in the

combination spectra of the paramagnetic ions: y = 10 cm- 1 and -c - 1/T

- 1012 sec. From the experimental data [87] on the temperature de-

pendence of the line width of the vibrational structure of the optical

spectra of ions in crystals it follows that the width increases with

the temperature approximately as W-T.* In this case the temperature

dependence of the probability of the relaxation transition will be de-

termined by the formula

_L dh ' (5 .94 )

when 4r22 Vl2 << 1 and
Vlk c <

A~h~-sY~ch(~)(5* 95)
when 47rn 2V2 > 1.

lk c

Let us consider some typical paramagnetic ions.

2+
Cu . The system of energy levels arising in a strong cubic field,

a weak field of lower symmetry, and an external magnetic field H0 is

shown in Fig. 5.5. This case is characterized by the presence of two

relatively close orbital levels, the interval between which is on the

order of 1000 cm 1 in solid salts. The width of the resonance lines in
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liquids turns out to be determined by the re-

d laxation transitions between these energy

levels without a change in spin direction.

4, For the width of the resonance line we obtain

bthe following expression

4A

(L2 - -. " (5.96)
Fig. 5.5. Successive7 

- R

splitting of the en- Here R is the equilibrium distance from the

ergy level of Cu2 +  Cu2+ the water molecule, the dipole
under the influence ion to
of a strong cubic, moment of which is equal to L. In contradis-
weak tetragonal, and
external magnetic tinction to the McConnell theory, it follows
field.

from this formula that the width should be

independent of the field HO. If we assume v0 = 500 cm- 1 [88], then the

temperature dependence will be given by the formula

AV=IVTexp(-). (5.97)

The connection between the relaxation time and the half-width is in

this case somewhat unusual and has the form

A
L V ep ij (5.98)

2 exp (_ A)

It is interesting to note that unlike Av, quantity 1/T1 decreases

with increasing temperature. This seemingly strange dependence of the

relaxation time on the temperature is explained by the fact that in

our case the specific heat of the spin system increases more rapidly

upon heating than the probabilities of the relaxation transitions. It

must be borne in mind that the nonequilibrium distribution of the par-

ticles among the levels a, -1/2 and a, 1/2 (or the levels b, -1/2 and

b, 1/2) cannot be annihilated with the aid of the relaxation transi-

tions a, -1/2--b, -1/2 and a, 1/2-+b, 1/2. Therefore, in addition to
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time TI, there will exist still another relaxation time T'I, the value

of which can be estimated from the formula

- ,6 (5.99)
111R' All/ 7 Rawb')

Cr3+ . Calculations have been made for two extreme cases, a strong

magnetic field and a weak one. If the field H0 is strong and the spin

levels are equidistant, then

1 =96 ~ .. , ~

where ,

12"34P=1 5 7 (5. zoo)
75 !- ,r.- iT).

On the other hand if H0  0, then

f 36 J1+;)Cr (5 101)

Taking into account the fact that for the chrome complexes v0

800 cm-1 [88], we obtain T1 v T2.

Mn2+ . If we denote by D the spin Hamiltonian constant that deter-

mines the splitting of the spin levels in the zero magnetic field, we

find that

I = , CD U2(5.102)

where in the case of a strong magnetic field C = (274.64.12)/35; on

the other hand, if H0 = 0, then C = (36.16.157)/7. At temperatures

300-4000 K we have hv0  kT for Mn2+ [56], and therefore the quantity

1/T1 first decreases on heating, and then begins to increase.

§5.7. Solutions of Paramagnetic Salts. Experimental Results

As was indicated in Chapter 4, paramagnetic absorption in liquid

solutions of Mnn2+ salts was first observed by Zavoyskiy. He investi-

gated this absorption at frequencies 1-10 Mcs in the presence of static
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magnetic fields, situated both perpendicular and parallel (89] to the

oscillating magnetic field. Later on a series of measurements of the

paramagnetic resonance line widths was undertaken not only in solu-

tions of Mn2+ [90-94], but also for other ions of the iron group and

the ion Gd3+ [64, 94, 84, 85]. Some complex ions were investigated

along with the simple ones [95, 85]. The measurements have shown that

AH in solutions depends strongly on the character of the ion, on the

solvent, and on the temperature. The limiting width reached at suffi-

ciently low concentrations, which is independent of further dilution,

has different values for different ions. In particular, in solutions

of the salts of hydrated ions Ti3+, Fe3 + , and C02+ the lines turned

out to be so broad, regardless of the dilution, that no resonance ef-

fect was observed. The reason for failure to observe the effect is ap-

parently the rather short spin-lattice relaxation time.*

TABLE 5.8

Absorption Line Width in Aque-
ous Solutions of Iron-Group
Salts at Room Temperature

,l.I Un.pal All ,, 1 4

AnCI, 4,0 300 1O
V 3,0 255 10
3 2,0 200 10
3 1,0 131 10

0,5 90 10
0,1 48 10
0 005 41 10

) 0,03 38 10
0,01 35 10

Cr(NO,3) 3,0 440_.20 9452
2,0 310±20 9452
1,5 270±20 9452
1,0 240±20 94&2

1 0,6 220±t20 9452
, 0,4 200±20 9452
, 0,2 190±20 9452

Cu(NOs," 4 140 207
, 2 140 207
3I 140 207
, 0,5 140 207

CuCIS 4 225 207
3 185 207
2 160 207

-3 I 140 207

1) Substance; 2) concentration,
mole/liter; 3) oersted; 4) Mcs.
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4,-fA In investigations made in the frequency
120

5 4.,x T range 10-10 Mcs [64], the effect is absent

/so in salts of ions having an even number of

f40 electrons (Cr2 +, Ni2+, V3+); this can be at-

20- %tributed, as in the case of solid salts, to

0 the smallness of the quantum of radio fre-

0 quency fields as compared with the initial

0 splitting of the spin sublevels.
00 10 40 so jo o

ec Certain data on the values of AH in iron-

Fig. 5.6. Dependence group ions at room temperatures are listed in
of the line width AH
on the temperature
in aqueous solutions Table 5.8.
of MnCl 2 of varying For certain ions (Mn2+ , Cr3+ , Cu2 +), an

concentrations. 1)
0.005 mole/liter; 2) investigation was made of the temperature de-
0.5 mole/liter; 3)
1 mole/liter; 4) 1 pendence of AH [94]. This dependence is shown
mole/liter MnC1 2 + 3
mole/liter LiCl; 5) in Figs. 5.6-5.8.
2 mole/liter MnC1 2. The following conclusions can be drawn

v = 12.6 Mcs. A) AH,
oersted. concerning the line width in solutions.

1) In highly concentrated solutions one observes sometimes rela-

tively narrow lines without a hyperfine structure. The lines broaden

upon dilution and a hyperfine structure arises. An example of this are

solutions of VOC12, investigated by Garif'yanov and Kozyrev [96]. It

must be assumed that considerable exchange interactions take place in

very concentrated solutions of this ion. An analogous fact was noted

also in liquid melts of hydrated salts of Mn2+ [93].

2) In solutions of Cr3+ salts one observes at not too high con-

centrations a narrowing down of the lines on dilution [64, 85]. This

narrowing down should be attributed to the reduction in the magnetic

dipole interactions, and perhaps partially also to the increase in the
4*

symmetry of the local electric fields acting on the ions, and conse-

-277 -



S9 A quently to the reduction in the "scatter" of

- - the unresolved fine-structure peaks. As to

the limiting line-width, which is no longer

dependent on further dilution, it may be due

200 either to spin-lattice interaction or to the

scatter of the fine-structure peaks.
tee 3) In aqueous solutions of Cu2+ salts

Fig. 5.7. Dependence [64], the line width is independent of the
of the line width on
the temperature in
aqueous solutions of concentration and of the viscosity (inasmuch
trivalent chromium as the latter decreases to approximately one
of varying concen-tration. 1) 0.4
mole/liter; 2) 1.5 fifth as the concentration is varied from 4
mole/liter; 3) 3.mole/liter; Cr(H2 0)6 - to 0.5 moles/liter). Therefore the width can-mole/liter rH 06

(NO3 )3 ; 4) 1 mole/ not be related in this case to the spin-spin

/liter [Cr(H 20)4 - interactions, and should be ascribed to spin-

C12 ]Cl. A) AH, oer-

sted. lattice interactions.

A comparison of the experimental results

Ai a= A
with the proposed theories is best made for

20 each ion individually.
2- 3+

2 Cr3+ . The independence of AH of the
18
150 field intensity H0 is equally well explained

/ either by the calculations of Al'tshuler and

Fig. 5.8. Dependence Valiyev or by those of McGarvey. The same per-
of LH on the tem-
perature in an aque- tains also to the qualitative explanation of
ous solution of 1
mole/liter Cu(N03 )2. the H(T) dependence. There are, however, ex-

The curve is a plot perimental indications that at approximately
of the equation 6H =

= aT2 . A) All, oer- 250 0C the lines begin to broaden with increas-
sted.

ing temperature; this broadening can be under-

stood only with the aid of the theory of Al'tshuler and Vallyev.

S2+, Fe B + . The McGarvey calculations cannot explain the sharp
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difference in the line width measured in the solutions of Mn
2 + and Fe3+

ions, and also the broadening of the Mn2+ line resulting from heating

above 700C. The theory of Al'tshuler and Valiyev makes it possible to

understand the observed AH(T) dependence, while the difference in the

width of the Mn2+ and Fe3 + lines is at any rate not in contradiction

with this theory.

Cu2+ o h Cu 2+
aq aq ion, the Altshuler and Valiyev theory explains

both the independence of 6H of H0 and of the concentration, and the

line broadening upon heating. However, in solutions of complex copper

salts, which give resolved hyperfine structure peaks [971, one ob-

serves that Iz influences the width of the individual peaks. This de-

pendence of AH on Iz in the case of complex copper ions is explained

qualitatively by McConnell's theory. The same pertains, apparently, to

solutions of vanadium salts, where the width of the hyperfine struc-

ture peaks also depend on Iz .

Recently, Tishkov [98] measured paramagnetic relaxation in paral-

lel fields in solutions of Mn2+ salts in water, glycerine, and water-

glycerine mixtures. The principal results obtained by him reduce to

the following.

1) The experimental x"(H11 ) are well described by the theory of

Casimir and du Pre with account of the spin-spin relaxation as made by

Shaposhnikov.

2) The value of - increases with increasing field HII. The depend-

ence of T(H ) is in good agreement with the Brons-Van Vleck formula.

3) When the concentration of Mn2+ is decreased from 3 to 1

mole/liter in an aqueous solution of Mn(N03 )2, the value of T increases

somewhat; further dilution does not affect T.

S4) A change in the microscopic viscosity of the solution does not

affect T.

-279 -



5) A change in the nearest surrounding of the Mn2+ ion brings

about a change in T.

6) The value of T as a function of the temperature goes through a

maximum corresponding to approximately 200C for 1 mole of solution of

Mn(N03 )2 in water.

None of these results contradict the Al'tshuler and Valiyev the-

ory, while the temperature dependence of T confirms this theory di-

rectly.

Summarizing, we can state that in the case of ions with a small

anisotropy of the g factor, the spin-lattice relaxation mechanism is

the perturbation of the solvate complex by the Brownian motion. Such

ions are, for example, Mn2+ , Cr3 +, and the hydrated Cu2+ ions. On the

other hand, in the case of ions having a strong g-factor anisotropy

(complex ions of Cu2+ and possibly of V02+), the stronger relaxation

mechanism is the one connected with the rotation of the solvate com-

plex.

§5.8. Line Shape under Saturation. Conditions

One speaks of saturation of paramagnetic resonance when a notice-

able dependence of the magnitude of the effect and of the resonance

line shape on the power of the alternating field is observed. The char-

acter of the saturation can be twofold, corresponding to two possible

types of absorption line broadening [99]. We shall call a broadening

uniform, if the absorbed energy of the radio frequency field is dis-

tributed among all the spins in such a way that thermodynamic equilib-

rium is not disturbed during the paramagnetic resonance processes. One

can name the following sources of uniform broadening:

1) dipole-dipole interaction between identical magnetic particles;

2) spin-lattice interaction;

3) interaction between the spins and the radiation field;
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4) exchange interactions;

5) motion of paramagnetic centers in a radio frequency field;

6) diffusion of the excited spin system within the paramagnet.

We are already acquainted with some of these broadening mechan-

isms, while others are encountered in the study of the effect in

metals, semiconductors, and other paramagnets.

If the broadening is due to inhomogeneity of the local magnetic

field, then the radio frequency energy is transferred only to those

spins for which the intensities of the magnetic field satisfy the

resonance condition. If at the same time the processes within the spin

system occur at a slower rate than the energy exchange between the

spins and the lattice vibrations, then the spin system does not have

time to reach thermodynamic equilibrium. A broadening of this type

will be called nonuniform. In this case it is convenient to visualize

the paramagnet as an aggregate of spin packets, which do not interact

with one another at all. To each packet belongs a certain absorption

line, the width of which is determined by the dipole-dipole interac-

tions. The reaction of the entire paramagnet to the external interac-

tions consists of the independent reactions of the individual packets.

It is therefore clear that such a system will behave entirely differ-

ently from a paramagnet with uniform broadening mechanism.

By way of an example we can list the following sources of nonuni-

form broadening:

1) hyperfine interaction of the spins of the paramagnetic centers

with the nuclear moments of the surrounding diamagnetic particles;

2) anisotropy of the spin-level splittings;

3) dipole interaction between spins with different Larmor preces-

* sion frequencies;

4) inhomogeneity of the applied static magnetic field.
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If the broadening is uniform, then it is easy to show that para-

magnetic absorption is determined by the following formula:

" --- =---j I-'-6T (5.103)
2 1r + 1H,rTjg (v-vo)

8

In the present case we write for the form function g(v) (see §1.3)

g(v - VO) for we are also interested in its dependence on the reso-

nant frequency vO.

In order to obtain the Bloch formula under resonance conditions,

we put

g(O)=2T; (5.lO4)

then

_._oor, (5.105)."( ) = + -il , r,'S

which coincides with formula (5.2) when v = vO. The dispersion is

characterized by the following expression:

X " X XO_ _ I i 'g (1 - V de. (5. 106)
-I +t 1 71H HTg( (-ve) v

Let us assume now that the broadening is not uniform. Let the

distribution of the local fields be specified by the function h(v- vo) ,

so normalized that

00

h (v - v) d -

In analogy with (5.104) it is convenient to introduce the time

. ,(o1 (5.107)

For absorption in the nonuniform case we have

"V (,-22) h v')-6'. (5.108)4,,~~lri (V'=-Z V" ,)
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Since the total width is large compared with the width of the line of

an individual spin packet, this expression can be simplified to the

* form

X' (V) = (V - e.) g('~-vs) dvI. (5.109)I.h,,) + ~ffTg(-.

The corresponding formula for the dispersion has the form

Z'(")-II, ,.,_ A d. (5.110)

We see that in the case of nonuniform broadening the absorption

line shape does not change upon saturation, since the integral in

(5.109) is independent of v. The character of the dependence of the

maximum absorption on the power of the alternating magnetic field is

determined by the form function g(v - v0 ). Consequently an experimen-

tal study of the saturation of lines with uniform broadening makes it

possible to determine the form function g(v - vO), though it is masked

in the present case by the total broadening.

In conclusion it must be noted that under saturation conditions

the Kramers-Kronig relations (1.18) no longer are valid. Relations

(1.18) are a direct consequence of the fact that the complex suscep-

tibility becomes an analytic function of the frequency in the lower

half of the complex plane. Van Vleck has shown that this condition

follows from the linearity of the system. Since the linearity of the

system is disturbed under saturation conditions, it is understandable

why the Kramers-Kronig relations must be reviewed.

Recently Tomita (100] proposed a general theory of paramagnetic

resonance under saturation conditions; he explained at the same time

many interesting phenomena that are encountered in the observation of

both electron and nuclear paramagnetic resonance.
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In many cases of nonuniform broadening, the saturation is never-

theless uniform owing to cross correlation.

15.9. Cross Correlation

The two characteristic time parameters T1 and T2 (or T and T')

are not always sufficient for a description of the paramagnetic relax-

ation processes. Thus, at very low temperatures it becomes necessary

to take into account the time required to establish thermal equilib-

rium between the lattice and the helium thermostat. In the case of

strong exchange interactions it is necessary to separate the "exchange

system" and introduce new time parameters characterizing the rate of

establishment of equilibrium between this system and the lattice, the

Zeeman system, etc. Developing further the researches of Kronig and

Bouwkamp [101], of Gorter [102], and of Abragam and Proctor [103],

Bloembergen [104] showed that a large group of phenomena can be ex-

plained from a unified point of view by introducing the concept of

cross correlation.

We shall henceforth assume always that T2 << T1 . The spin-spin

relaxation time T2 has a twofold significance: first, the quantity

l/T2 is of the order of the resonant paramagnetic absorption line

width; second, the quantity T2 is the time necessary to establish

thermal equilibrium within the spin system.

If the Zeeman and the intracrystalline Stark splittings of the

spin levels are much larger than the average interaction energy be-

tween the spins of two neighboring magnetic particles, the second in-

terpretation of the time T2 becomes meaningless. In this case, the

conversion of the Zeeman and Stark energies into the energy of dipole-

dipole interaction is difficult, and consequently one cannot speak of

a single spin system. The rate of establishment of thermal equilibrium

between the system of individual spin levels of the paramagnetic par-
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ticles, on the one hand, and the system of dipole-dipole interactions

on the other, will be characterized with the aid of the "cross relaxa-

tion time" T21. Greatest interest is attached to the case T21 < TI ,

which we shall now consider.

We assume first that the paramagnet contains magnetic particles

of one sort with effective spin S' = 1/2. Let the Zeeman splitting of

the individual ion hvl2 = gH 0 be so large that the energy of inter-

action between spins of different particles can be regarded as a per-

turbation. It is necessary to calculate the probability that an energy

quantum hvl 2 will be converted as a result of the realignment of the

magnetic-dipole system into the energy of dipole-dipole interaction.

Direct application of perturbation theory is impossible, owing to the

tremendous number of degrees of freedom of the spin system. It is sim-

plest to attain our purpose by means of a mixed method, which combines

perturbation theory and the method of moments.

Successive application of perturbation theory calls for the

knowledge of the eigenvalues of that part of the dipole-dipole inter-

action operator which commutes with the Zeema-i-energy operator. In

order not to consider the tremendous number of energy levels which are

eigenvalues of the matrices A and B (5.9), which conmmute with the Zee-

man-energy matrix, we introduce a form function g(v), which has a sym-

metrical maximum at the point v.2 . The transitions between energy lev-

els of these dipole systems are brought about by that part of the di-

pole-dipole interactions which is represented by matrices C and D,

which do not commute with the Zeeman energy matrix. We shall see below

that in our case we can disregard the terms E and F. In the first ap-

proximation of the theory of time-dependent perturbations, the proba-

41 bility of transition of the Zeeman energy hvl2 into dipole energy is

2 8(55. 1)
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We denote here by c1 2 the nondiagonal element of the matrix C, which

relates the states 1 and 2. The form function g(v) can be determined

with the aid of its moments. The second moment of this function rela-

tive to the frequency v2 1 can be calculated from the following formula

Sp I[ + ) ,j ' Z s+s(A+l h) ' IMl=,S,( (5.112)

P

The difference from formula (5.12) consists in the fact that in place

of the operator ZSx, which is connected with the action of the exter-

nal oscillating magnetic field applied along the x axis, we have here
A A A

the matrix of the operator C - ZSziS+J , the elements of which deter-

mine the intensity of the transitions that we are now considering. The

moment (5.112) has obviously the same order as the moment (5.12),

which pertains to the absorption line of the radio frequency field,

but the two are not equal.

If we assume that g(v) has a Gaussian form, then we obtain for

the cross relaxation probability

3i02s (s + !) " t

"= ' ' i sJI cs, .- 2.--, (5.113)

At large fields HO, the time T2 increases very rapidly with in-

creasing interval between the Zeeman levels of the ion. Therefore the

processes 6M = +2, caused by the terms E and F, can be neglected.

If H0 -- 0, then T2 1 -. T2 and we have in accordance with Kronig

and Bouwkamp [1 01]

=2 L "  (5.114)

Here Mi2 Is the second moment calculated with additional account of

the terms E and F.

It must be kept in mind that the assumed Gaussian character of
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the curve g(v) can lead to serious errors, particularly in the case of

strong exchange coupling and random paramagnetic dilution.

We now proceed to consider substances which contain either two

sorts of paramagnetic centers, or magnetic particles of one sort but

with spin S > 1/2. The establishment of equilibrium between the Zeeman

and the dipole systems can become appreciably accelerated if there are

two pairs of levels with almost equal intervals: hva - hv Then the

following processes will take place under the influence of the dipole

interactions: the ion i will absorb an energy hv , the ion 1 will lose

an energy hv,, and the energy h(va - vp) is transferred to the dipole

system. The probability of a process of this kind is

W'il - E <EI u I + h, - h,)' e(.), ( 5. 115)

where is the operator of interaction between the ions i and 1, and

gap (Va - vP) is a form function which has a maximum at the point va -

- v = 0. The second moment of this function can be determined from a

formula analogous to (5.112).

Let us point out a few important cases, where two pairs of energy

levels with practically identical intervals are encountered: 1) the

ion Ni2+ (S = 1) in an axial crystalline field and a weak magnetic

field (Fig. 5.9a); 2) the ion Ni2+ in an intermediate crystalline

field and an intermediate magnetic field (Fig. 5.9b); 3) the ion Cr
3 +

(S = 3/2) in a weak magnetic field parallel to the crystal axis (Fig.

5.9c); 4) two nonequivalent ions of Cu2+ (S = 1/2) (Fig. 5.9d).

We can calculate ga( approximately if we know the form function

ga and g, for the paramagnetic resonance absorption lines va and v.,

using the following formula:

, 1 g. (v) g, (v' & (V '- V'.'d"; (5. 116)

if ga and g. have a Gaussian form, then
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Fig. 5.9. Typical example of cross
relaxation transitions.

(',- l
AGJ ' 2() + (5.117)• w~ --- )f' (AV1)' + (A~p),

Kopvillem [115] made detailed calculations of the form function

ga (v) by the method of moments. He obtained a somewhat unexpected re-

sult, which contradicted Bloembergen's statements. It turned out that

the form function g p(v) remains practically unchanged upon magnetic

dilution, if the energy h(v, -- vP) is smaller than the average energy

Edip of the magnetic dipole-dipole interactions, calculated per para-

magnetic ion in a magnetically concentrated crystal. If on the other

hand h(V, -- vP) > Edip, then the increase in energy h(va -- v ) will

lead to a rapid decrease in gap(O).

We have assumed in the preceding sections that a change in the

spin-level populations can occur under the influence of an external

applied oscillating magnetic field and as a result of spin-lattice in-

teractions. The probabilities of the corresponding transitions were

denoted by us by PiJ and Aij. We see now that the populations of the

spin levels can also be changed by cross relaxation. Thus, for example,

for the case shown in Fig. 5.9a we have

(O) eK poccpea ..

+ N ' --[N N , N , ) - -- N, N ) . ( 5 . n1 8 )

* Here (Nk)ad is the population of level k under conditions where the

spin system is equilibrium, it being assumed that the spin system is
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isolated from the lattice. If T is the lattice temperature and Tad is

the temperature of the spin system under adiabatic conditions, then we

have the following system of differential equations for the level pop-

ulation of particles with spin S = 1:

d --p- "(NN, --) A -(N i N -) +

+ A, (j,- N N. L.-) +

N,+N,+N,=N (5.119)
Me-=P., (Na- ,) + , -3-N, +-I .kr+

-(W + W "=, [N.-,V.-IV. inn.
J

We have assumed here that the frequency of the applied radio signal is

V3 2 .

A solution of equations such as (5.119) enables us to estimate

the behavior of the paramagnet under specified external conditions and

the role of cross relaxation. Since we are unable to examine in detail

the phenomena that can be explained by cross relaxation, we shall stop

to discuss some of them.

a) Intermediate relaxation in measurements made in parallel fields

Measurement of paramagnetic absorption in parallel fields made in

dilute paramagnetic salts have shown [105] that in addition to ordinary

relaxation maxima, the positions of which are determined by the values

of T and T', intermediate temperature-independent absorption peaks are

observed in many cases. A quantitative comparison shows that the ex-

perimentally established region of dispersion and absorption corres-

ponds to a frequency v - (1/2)T 2 1.

b) Thermal contact between two different spin systems

If a paramagnetic salt contains two sorts of paramagnetic par-

ticles, then the cross relaxation theory makes it possible to estimate
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the energy that goes over from one spin system to the other if the

thermal equilibrium between these systems has been disturbed.

c) "Crossing" saturation

In the previously mentioned experiments of Giordmaine et al [58],

which were carried out at helium temperatures, it was shown that satu-

ration of one of the hyperfine components of copper ions leads to a

rapid saturation of all other components which have not been subjected

to the action of the radio frequency field. The authors of this experi-

ment have attempted to attribute this to the broadening of the energy

levels of the "effective" oscillators of the lattice resulting from

the weak coupling between these oscillators and the oscillators of

other frequencies and with the helium thermostat (see §5.4). The real

reason forthe crossing saturation, however, is apparently cross relax-

ation. A principal role is played here by processes in which four ions

participate simultaneously. Let the frequency of three resonant lines

Va, v , and v be such that (v - va) - (v - v ); besides, hv,,

- E(2) - E l) . Let us take four ions, of which two are at an energy

level E 2 ) and one each are on the levels E(l) and E(l). As a result
P a 'V

of dipole-dipole interaction between these ions, their spins can be-

come simultaneously reoriented. In this way the energy of the radio

frequency field applied at a frequency v can be transferred and satu-

rate paramagnetic resonance at the frequencies va and v . The numerical

estimate of T 2 1 is in good agreement with the experimental data. Bloem-

bergen et al [101] have set up special experiments which led to the

following important conclusion: at temperatures above 1 0K processes

connected with the heating of the system of "effective oscillators" do

not play any role whatever in dilute paramagnetic salts.

d) Nonuniform broadening and uniform saturation
4,

In sufficiently diluted paramagnetic salts, the greater part of
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the resonance-line width is due to the initial magnetic field of the

nuclear spins of the diamagnetic atoms and to the scatter of the param-

eters of the crystalline field. A nonuniform broadening of this type

will be called microscopic to distinguish it from the macroscopic

broadening, produced by the inhomogeneity of the external magnetic

field and by the polycrystalline nature of the specimens.

Let the total width of the lines be determined by the quantity

1/T, and the uniform part of the broadening by 1/T2 . As a result of

cross relaxation, the energy of the radio frequency field absorbed by

the fields whose resonant frequencies are distributed within the re-

gion v0 + l/T2 will be transferred to fields with resonant frequencies

outside this region. If at the same time the corresponding cross re-

laxation time is T2 1 > T1 , then the saturation of the entire resonant

line will occur as if the broadening were uniform; the expression for

the saturation factor will contain T* in lieu of T2. The cross relaxa-

tion within the resonant line can be due either to processes of the

Kronig-Bouwkamp type, or to multiple processes similar to those con-

sidered in item c). In the case of Kronig-Bouwkamp processes we read-

ily obtain

-t " n (5.120)

Thus, the saturation is uniform in the majority of practically

realized conditions, even in the case of nonuniform broadening. Among

the experiments directly confirming the considerations advanced here

are those on saturation of paramagnetic resonance in nickel fluorosili-

cate by means of radio frequency pulses [106].

§5.10. Acoustic Paramagnetic Resonance

In analogy with ordinary paramagnetic resonance, in which a para-

magnet selectively absorbs energy from an alternating magnetic field,
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it is possible to have also paramagnetic resonant absorption of ultra-

sonic energy. The theory of this phenomenon was proposed by Al'tshuler

[107], while the experimental observations were first made on nuclear

paramagnets [108, 109] and recently also on Mn2+ ions introduced into

quartz crystals 111].

Acoustic paramagnetic resonance consists of a transfer of ultra-

sonic energy to a system of magnetic particles; this transfer occurs

when a quantum of elastic-vibration energy is equal to the difference

between the energies of the magnetic levels. Thus, Just as in the case

of ordinary paramagnetic resonance, the acoustic effect will take

place if condition (1.2) is satisfied, except that now v stands for

the frequency of the ultrasound.

The mechanism that effects the transfer of the energy from the

sound oscillations to the paramagnetic particles has the same nature

as paramagnetic lattice relaxation, realized with the aid of single-

phonon processes. Resonant absorption of ultrasound can therefore be

regarded as a phenomenon inverse to paramagnetic relaxation. Under the

influence of the sound oscillations, the forces acting on the magnetic

particles will vary periodically and transitions will occur from one

magnetic energy sublevel to another. The complete population of the

lower sublevels will cause the number of transitions connected with

absorption of energy to exceed the number of the inverse transitions.

Equilibrium will be established by transferring the excess energy of

the paramagnetic particles to the thermal vibrations of the lattice.

The calculation of the absorption of ultrasound by paramagnets is

analogous to the calculation of the time of paramagnetic lattice re-

laxation produced by first-order processes. This makes it possible to

obtain the following formula for estimating the effect in solids:

A W(5.121)
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Here a is the coefficient of sound absorption, that is, the ratio of

the energy absorbed per cubic centimeter to the energy incident on a

square centimeter per second; T is the temperature of the body; T0 is

the temperature at which the relaxation time T was determined. The ex-

perimental data lead to values on the order of 0.1 cm- for the coef-

ficient. Thus, the effect investigated is sufficient to become observ-

able. Calculations of a were therefore undertaken subsequently for

many types of paramagnets assuming various mechanisms for the spin-

lattice coupling.

The first to be investigated was resonant absorption of ultra-

sound by paramagnetic salts in which the spin-lattice coupling is by

modulation of the internal electrical field of the crystal by elastic

lattice oscillations. The coefficient a was calculated for several

typical salts of the iron-group elements (titanium and chrome alums),

salts of rare-earth elements (cerium nitrate, praseodymium ethyl sul-

fate), and finally for salts whose magnetic ions are in the S state

(iron alums). The absorption coefficient for titanium alum was found

to be

R, , (5.122)

where P = w2No/pkTv3Av. At T = 200 K, a numerical estimate yields a

- 2.10 " 88 cm- I . For chrome alum we have

( A* (5.123)

A numerical estimate yields at room temperature a = 10 -  v cm-

Formula (5.123) pertains to transitions between spin levels be-

longing to different Kramers doublets. Consequently, unlike the titan-

ium salts, we have here a - v 2 . In the perturbation-theory approxima-

tion that yields formula (5.123), we have a = 0 for transitions within

the Kramers doublets. In the higher-order approximation we obtain, as
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for the ion T13+ , a - V4 . Physically this result is understandable and

has general significance. The lowering of the symmetry of the crystal-

line field, brought about by the elastic lattice vibrations, can change

the splitting of the spin levels pertaining to different Kramers doub-

lets, but can hardly influence the distribution of the Kramers doub-

lets themselves.

Calculation for the salts of rare-earth elements has shown that

the effect of resonant absorption of ultrasound is small in those

cases when the crystalline field leaves in the magnetic ions only a

Kramers energy-level degeneracy, which cannot be lifted by the changes

induced in the electric field by the lattice vibrations.

In ethyl sulfates of rare earths, the crystalline field has hex-

agonal symmetry. If the rare-earth ion contains an even number of elec-

trons, the energy levels retain the Kramers degeneracy and the effect

of sound absorption should therefore be large. Thus, for praseodymium

ethyl sulfate we obtain

From this we have a = -0 -15 cm-1 when T = 200 K. The effect is so

large that this salt is apparently the most suitable for experimental

observation of the effect. The acoustic effect in rare-earth salts is

analyzed in detail in [110].

For iron alums in which the Fe3 + ion is in the S state, the ab-

sorption coefficient is relatively small, on the order of 10
-24 v2 cm-1

at room temperature.

In gadolinium salts, in which, as is well known, the splitting of

the ground energy level of the paramagnetic ion by the electric field

of the crystal is much larger than in the iron ion, we can expect the

• acoustic effect to be approximately 104 times stronger.
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Resonant absorption of ultrasound was considered also under the

assumption that the spin-lattice coupling is produced by a change in

* the magnetic interaction of the particles by the elastic oscillations

of the lattice (the Waller mechanism). In this case the absorption co-

efficient turns out to be

1), (2s+),. (5.125)

In substances with large density of magnetic atoms, of the MnF2 type,

this mechanism may make the coefficient a at room temperature equal to

approximately 10-19 v2 cm-1 .

Resonant absorption of ultrasounds will obviously take place not

only in electronic paramagnets, but also in substances having nuclear

paramagnetism. Favorable circumstances for the nuclear effect are the

small line width of the paramagnetic absorption and the large density

of the magnetic particles. Small values of nuclear magnetic and quad-

rupole moments are the cause of a relatively weak spin-lattice coup-

ling, which naturally decreases the effect.

In solid dielectrics, in which the spin-lattice coupling is due

to magnetic interaction between the nuclei, the coefficient of reso-

nant absorption of ultrasound can be calculated by means of formula

(5.125), where P now stands for the nuclear magneton. For example, for

a NaBr crystal at T = 3000K we have a - 10-25 V2 cm- 1 . For substances

in which the spin-lattice coupling is due to quadrupole nuclear inter-

actions, the coefficient a can become appreciably larger, on the order

of 120 v2 cm-1 . An even larger effect can be expected in metals in

which the coupling between the nuclear spins and the lattice vibrations

becomes intensified by the interaction between the nuclei and the con-

duction electrons. An appreciable effect can also be obtained in sing-

let electronic levels of paramagnetic particles, the nuclei of which

295 -



have nonzero magnetic moments (1O).

It is interesting to compare the resonant absorption of ultra-

sound with paramagnetic resonance under the influence of variable mag-

netic fields.

a) A comparison of the magnitudes of both effects can be readily

carried out by recognizing that the coefficient of absorption of the

electromagnetic-field energy is

, -- AX X40,V~ ( 5.126)

In many "electronic" paramagnets Av = 109 cps, X0 - 10 - 6 , and there-

fore a = 10-22 V2 cm-1 . In many cases we have also obtained for the

coefficient of ultrasound absorption an expression proportional to v
2

with the proportionality factor strongly dependent on the matrix ele-

ment of the spin-lattice interaction operator. If this matrix element

differs from zero in first approximation, then the values obtained for

a are much larger than ae . On the other hand, if higher approximations

are needed, usually a and ae are of the same order of magnitude.

It must be noted that the absorption coefficient for the longi-

tudinal and transverse waves will generally speaking be different. We

have cited in all cases the average values of the coefficient a for

solid bodies.

b) Ordinary paramagnetic resonance is strongly dependent on the

angle between the static and alternating magnetic fields. The acoustic

effect is little sensitive to changes in the direction of sound-wave

propagation relative to the field HO .

c) Absorption of ultrasound is frequently made possible by trans-

itions between such sublevels, for which the magnetic dipole transi-

tions are forbidden.

d) The absorption line shapes in the case of acoustic and ordinary
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effects can be quite different. The reason for it is that in both

phenomena we deal with the same energy-level bands, produced by the

A magnetic and other interactions, but the laws governing the transition

probabilities between these levels under the influence of ultrasound

and under the influence of an alternating magnetic field are quite

different in nature.

In spite of the fact that in many cases the coefficient of ultra-

sound absorption greatly exceeds the coefficient of absorption of the

energy from the radio frequency field, the low sensitivity of ultra-

sonic research methods makes it desirable to use indirect methods of

detecting acoustic paramagnetic resonance. Such resonance can be ob-

served by "saturation" of the magnetic sublevels of the nuclei, a sat-

uration occurring at high sound intensities [108]. Another method can

be based on the changes produced in the magnetization of the body un-

der the influence of the ultrasound.

The generation, and particularly the transmission of sound oscil-

lations at microwave frequencies from the generator to the investi-

gated substance constitutes a very complicated experimental problem.

Therefore great interest is attached to a determination of the condi-

tions under which one can expect a noticeable effect in electronic

paramagnets at relatively low frequencies, on the order of 100 Mcs.

This question was considered in [113). Since the greatest effect is

connected with transitions between different Kramers doublets, it is

apparently very convenient to observe transitions between spin levels

near the points where the levels cross, as occurs, for example, in the

case shown in Fig. 1.3.

We note finally that if magnetically diluted crystals are used,

the scattering of the sound waves on the imperfections of the crystal

lattice can become most appreciable. For reasons indicated in §5.3,
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item 7, resonant absorption of these waves will be very strong. There-

fore indirect measurement methods, which make it possible to evaluate

directly the difference in the spin-level populations, should be very

convenient.

An experimental study of resonant paramagnetic absorption of ul-

trasound can greatly supplement the data obtained by investigating or-

dinary resonance and paramagnetic relaxation; it makes possible a

deeper explanation of the nature of the spin-lattice interaction, and

a determination of the constants characterizing this interaction; it

discloses new absorption lines, the appearance of which under the in-

fluence of a radio frequency field is impossible because of the ab-

sence of magnetic dipole transitions.
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Manu-
script [Footnotes ]
Page
No.

215 A primed summation sign denotes that J , k.

227 See footnote for page 215.

259 The only exception is the Tutton's salt of Cu

273 A detailed analysis of the interaction between the oscilla-
tors Qi and the Brownian motion, carried out by K.A. Valiyev
(unpublished work), has shown that the constant Tc can be
given a different interpretation; the character of the tem-
perature dependences of Aik remains the same in this case.

276 Confirming this fact is the possibility of observing reso-
nance in VO2 + [96], and also the reported [84] observation
of the effect in a complex salt of Ti3+ . In these cases a
strong low-symmetry component of the crystalline field can
explain the sufficiently long time T.

Manu- [List of Transliterated Symbols]
script
Page
No.

207 RoK = lok = lokal'nyy = local

209 seeu = zeem = zeemanovskiy = Zeeman (adj.)

209 Amn = dip = dipol'nyy = dipole

209 o6m = obm = obmen = exchange
*

251 sKCn = eksp = eksperimental'nyy = experimental

251 Teop = teor = teoreticheskiy = theoretical

263 pes = rez = rezonansnyy = resonance

270 cn = sp = spin = spin

273 cth = coth

288 Kpoccpen = krossrel = krossrelaksatsiya = cross-relaxation

288 aA = ad = adiabaticheskiy = adiabatic
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Chapter 6

METALS AND SEMICONDUCTORS. IMPERFECTIONS IN CRYSTALS

§6.1. Effect on Conduction Electrons

The carriers of paramagnetism in metals are the conduction elec-

trons. In transition metals, paramagnetism may also be associated with

the ions that form the core of the crystal lattice. One could expect

in metals the appearance of paramagnetic resonant absorption lines,

the positions of which would be determined by the g factors of both

the conduction electrons and of the d and f shells of the atoms. How-

ever, the observation of paramagnetic resonance in metals entails sev-

eral difficulties: 1) the skin effect reduces the absorption of energy

from the radio frequency field and makes the form of the resonance

line more complicated; 2) small paramagnetic inclusions may cause re-

sults that are quite erroneous; 3) in many metals, the spin-lattice

interactions smear out the paramagnetic resonance curve.

To reduce the skin effect one usually employs minute metal par-

ticles, pulverized by ultrasound and embedded in paraffin. The metal

specimens must be subjected to multiple purification to rid them of

paramagnetic impurities. A confirmed effect on the conduction electrons

was obtained in the following metals: Li, Na, K, Be, Cs (1-11]. Inves-

tigations of many other substances, such as Al, Mg, Pd, W, produced no

positive results, apparently owing to the excessive width of the reso-

nance line.

2" The first calculation of the factor for conduction electrons

was made by Jafet (121 with sodium as an example. Only the spin-orbit
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interaction was taken into account there, since the correlation and

exchange effects were insignificant, and the influence of interaction

between the electronic and nuclear spins became noticeable only at

temperature T < 10 K. The closeness of the experimental values of the

S factors to the pure spin value gspin = 2.0023 shows that the spin-

orbit interaction can be regarded as a perturbation. The Bardeen

method [13], in which it is possible to avoid calculation of the mat-

rix elements, was used in the computations. This yielded Ag = g-

-gspin =-3.710-4 , whereas experiments [8, 9] implied that Ag =

-(8 + 12).10 -4 . Brooks [14] made calculations based on the atomic

value of the spin orbit coupling constants. The value Ag = -6.6.10-4

which we obtained agrees within the limits of error with the experi-

mental data. The value Ag = -6.10- 5 obtained theoretically for lithium

(15] is very small, in agreement with the measurement results [8, 9]:

1Ag1 < 10- 4 . For beryllium, experiment [8] yields Ag = +(9 + 1)10- 4

and there are no theoretical calculations. For potassium, the g factor

could at first not be determined, since the effect was small and be-

came observable only at temperatures below 40 K.

An original method of obtaining pure and finely ground specimens

of metals was proposed by Levy [9]; he froze solutions of alkali metals

in ammonia at liquid nitrogen temperature. He was thus able to measure

paramagnetic resonance absorption in potassium at 1800 K and in cesium

at 250 K. The measured values of the . factor were 1.99 and 1.93, re-

spectively, in good agreement with the theoretical [14] values 1.99

and 1.94.

In metals in which the paramagnetism is due to the conduction

electrons, the form of the resonance line is determined by the spin-

lattice interactions. The spin-spin relaxation is insignificant, owing

to the high velocity of the electrons and the relatively small value
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of the spin-spin interactions. A theoretical analysis of paramagnetic

relaxation in metals was first made by Overhauser (16], who used the

single-electron model of degenerate gas for the calculation of the in-

teractions between the conduction electron spins and the other parts

of the metal. The interactions themselves were regarded in this case

as small perturbations.

One might think that, Just as in the case of ionic paramagnetic

crystals at high temperatures, the principal role in the energy ex-

change between the electron spins and the lattice vibration would be

assumed by second order processes (combination scattering of phonons).

This assumption, however, must be rejected for the same reasons for

which two-phonon processes are disregarded in the calculations of the

electric resistivity of metals.

Overhauser considered the following relaxation mechanisms.

1) Interaction with transverse phonons. Let us assume that the

relaxation is brought about by interaction between the magnetic moments

of the electrons and the magnetic field produced by the charged par-

ticles (ions) participating in the lattice vibrations. It is obvious

here that only transverse vibrations are significant. We denote the

Fermi energy in the absence of an external magnetic field by so =

f 1;/2m, the metal particle diameter by d, the length of the side

of the atomic dimension cube by a, the number of electrons per cubic

centimeter by Ne, and finally the density of the metal by p. If we

neglect the correlation between the translational motion of the con-

duction electrons and the vibrational motion of the lattice, the cal-

culations yield for the relaxation time the following expression:

3•ms~ks4 4 (6.1)

Prom this we get, for example in the case of lithium, T 6.10 - 2 sec
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at room temperature.

2) Interaction with longitudinal phonons. Relaxation can be due

to interaction between the electron spins and the electric field pro-

duced by the vibration of the positive lattice ions. Interactions of

this type in atoms give rise to spin-orbit coupling. Transverse vibra-

tions produce a relatively weak electric field; we can therefore con-

fine ourselves to an analysis of longitudinal oscillations. Calcula-

tion shows that the relaxation time is

96pk.mlc4V' (6.2)

Here v is the average velocity of sound and 0 is the Debye temperature.

It follows from (6.2) that for lithium at room temperature T

S3"i0 -4 sec.

3) Magnetic dipole interaction of the electron spins. In this

case the relaxation process may be the result of both simultaneous re-

orientation of the spins of both interacting electrons and of the spin

of one electron only (see §5.2 and 5.3). If only the former processes

which play the principal role, are taken into account, we obtain for

the relaxation time
I5m.tA'c 4

(6.3)

At room temperature we have hence T = 6.10 - 3 sec.

4) Interaction with nuclear spins. The relaxation may also be

caused by interaction between the electrons and the nuclear spins. In

this case, as in atoms, the principal role is assumed by the hyperfine

interaction with the electrons in the S state [17]. Calculation shows

that
N__8+ Q66

- 1(--" )9 . ,(6.4)

where rN denotes the relaxation time of the nuclear spins; according
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to calculations by Korringa [17], this time is equal to

' ; IM , TI(OF9'11 ( 6. 5)

Here *(0) is the wave function of the electron situated on the Fermi

surface; the vanishing of the argument denotes that it is necessary to

take the value of the given function at the location of the nucleus.

It is interesting that the relaxation time T is independent of the tem-

perature. One can therefore expect this relaxation mechanism to have

the decisive significance at sufficiently low temperature.

5) Interaction of the electron spins with the magnetic field of

the currents arising during the translational motion of the conduction

electrons. This relaxation mechanism leads to the following expression:

91:n10A (6.6)

20eA!Ikn TlR~T

The weak dependence on the applied magnetic field H0, which is implied

in this formula, can be used to ascertain whether this mechanism plays

an appreciable role in paramagnetic relaxation processes. Numerical

calculation shows that when H0 = 5 oersted and T = 293cK we obtain T

8.10- 7 sec.

Experimental determinations of the relaxation time [8, 9] have

shown that even the shortest values of T given by the latter of the

mechanisms proposed by Overhauser are approximately two orders of

magnitude higher than the measurement results. In addition, in contra-

diction to Formula (6.6), it was observed that the relaxation time is

constant as the field H0 is varied from 300 to 3000 oersted.

The inadequacy of the Overhauser theory lies evidently not in the

fact that some important relaxation mechanism has been left out. The

use of plane waves for the description of the conduction electron mo-

tion probably leads to excessively crude results. Elliott [18] obtained
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good agreement with experiment by calculating the relaxation time us-

ing the ordinary band theory of metals, under the assumption that the
4*

energy exchange between the electron spins and the lattice vibrations

is due to the spin-orbit interaction. The connection between the lat-

tice vibrations and the motions of the electrons is so much stronger

than the direct interaction between the electron spins and the lattice

that even a weak orbit coupling is sufficient to create the most ef-

fective relaxation mechanism. Elliott obtained the following formula

for the relaxation time

= IT, (6.7)

Here -R is the impact time of the conduction electrons which, as is

well known, can be readily determined if the electric resistivity of

the metal is known. For lithium, sodium, and potassium the impact time

is 'R = l.10-14, 3 "10 -1 , 2.10-14 sec, respectively. The impact time

can be assumed, with sufficiently good approximation, to be propor-

tional to the electric conductivity of the metal, and therefore it

will be approximately proportional to 1/T at temperatures T > e,

whereas at low temperatures TR - l/T 5 . For temperature T > e, the nu-

merical factor is a = 1/25/3 in (d/a) (see (6.1)); when T < e, the

factor a depends on the temperature and besides, as in the case of

high temperatures, T - l/T.

The attractive feature of Elliott's theory is the simple connec-

tion between the relaxation time T and the deviation of the . factor

from the pure spin value, which, as we have seen, is due to the spin-

orbit interaction. Formula (6.7) readily explains why it was impossible

to observe paramagnetic resonance in heavy metals. After all, with in-

creasing atomic number of the element, the spin-orbit coupling in-

creases rapidly, and with it also the deviation Ag.
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Andreyev and Gerasimenko (19] have analyzed the problem of para-

magnetic relaxation in metals by solving the kinetic equation for the

A conduction electrons. They have shown that at temperatures T >> PHo/k,

under paramagnetic resonance conditions, the magnetization vector obeys

Bloch's equation (5.1), in which the longitudinal and transverse re-

laxation times are equal to each other. At the same time they have

made more precise and corrected Elliott's formula for the paramagnetic

relaxation time, for which they obtained the following expression:

-I i ______ (6.8)

where is the average electron energy in the lattice, and T =

= (v/kvF)2PHO, if the dimensions of the metal specimen are such that

d > hvF/20H0 ; if on the other hand the specimen dimensions do not sat-

isfy this inequality, then Tk -- ivkd; by vF we denote here the veloc-

ity of the electron on the Fermi boundary. At a temperature T >> O,

Formula (6.8) assumes the form

Ln T1 (6.9)

On the other hand, if T << 9, then

r=T k- (6.10)

Experimental investigations of the relaxation time have shown

that in the case of sodium, T l 1/T as the temperature varies from 4

to 293 0K, as called for by the theory.

The value T = 9"10 -8 sec obtained by measurements at room tempera-

ture is in good agreement with the theoretical value T = 10-6 T-1 sec.

In lithium and beryllium, experiment has disclosed that the relax-

ation time is constant as the temperature is varied over a wide range.*

At the same time, it was established that if the specimen is purified
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and the amount of lithium in it is raised from 99.0 to 99.9%, the re-

laxation time increases from 3-10 - 9 to 2.5'10- 8 sec. All these facts

can be simply explained. Because the value of 4g of light metals is

small, the paramagnetic relaxation is determined by the spin-orbit

coupling of the conduction electrons with the impurities. Success in

the measurement of the "true" relaxation time will probably be attained

in the case of specimens subjected to an exceedingly careful purifica-

tion.

In potassium the width of the resonance line is approximately 50

times larger than in sodium [9]. In cesium at helium temperatures, the

line width is approximately 2"108 cps.

Garif'yanov and Starikov [11] have established that negligible im-

purities of heavy metals (mercury or lead) in specimens of sodium and

lithium are capable of broadening the resonance curve by a factor of

104. This broadening is apparently the result of the shortening of the

relaxation time due to the strong spin-orbit coupling in the heavy-

metal atoms.

In conclusion we note that the area under the paramagnetic reso-

nance absorption curve is proportional to the purely paramagnetic part

of the static susceptibility. Therefore, measurements of the paramag-

netic resonance make it possible to separate the diamagnetic part of

the susceptibility from the paramagnetic one [20]. The main difficulty

arising in realization of this idea lies in the fact that it is ex-

ceedingly difficult to make absolute measurements of paramagnetic ab-

sorption. This difficulty was cleverly circumvented by Schumacher,

Carver, and Slichter [5] who observed simultaneously both electronic

and nuclear resonance in metallic lithium, at one and the same fre-

quency, 1.7.107 cps. The absolute value of the intensity of the nuclear

line could be readily calculated. By comparing both resonance curves
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it was found that the static susceptibility is (2.0 + 0.3)'10-6 COGS;

theoretical calculation [21] yields 1.87.10 -6.

§6.2. Effect of Skin Effect and Diffusion of Electrons on the Form of
the Resonance Line

It has been demonstrated theoretically and experimentally that

the skin effect and the diffusion of electrons within the skin layer

change appreciably the form of the paramagnetic resonance line. The

distortion of the resonance line form should result even from the fact

that, unlike paramagnetic dielectrics, in which the variable part of

the magnetization is determined by the magnitude of the applied oscil-

lating field, in a metal there exists also an inverse dependence of

the local values of this field on the magnetization, owing to the skin

effect. By virtue of this, whereas in dielectrics the absorbed energy

is proportional to the coefficient X", in a metal it will also be pro-

portional to the real part of the dynamic susceptibility, X". In addi-

tion, the line shape will be distorted also because diffusion causes

the same electron, which moves inside the skin layer, to be subjected

to the action of the oscillating magnetic field, the amplitude and

phase of which are continuously varying. Thus, the interesting informa-

tion concerning the nature of the metallic state, obtained by the para-

magnetic resonance method, can be rid of distortion only if account is

taken of the skin effect and of electron diffusion. A theoretical anal-

ysis of this question was made by Dyson (22] who used a very simple

model of the metal in order to obtain formulas that are convenient in

practical use. He suggested that the conduction electrons diffuse like

free particles, and that the spin of each electron can be regarded as

an independent quantum variable. The spin is very weakly coupled to

the orbitpl motion and is therefore very weakly affected by the col-

lisions experienced by the electrons. Judging from the value of the
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spin-lattice relaxation time in the case of sodium, for example, only

one out of 105 collisions causes reorientation of the spin. One can

therefore assume that the spin responds primarily to changes in the

local magnetic field.

We denote the thickness of the skin layer by 6 and the mean free

path of the electron by X. In order for the electron to traverse the

skin layer the time required on the average is

During the time tD' the amplitude and phase of the oscillating magnetic

field change by approximately e times. Consequently, in place of a

definite frequency of magnetic field acting on the electrons within

the layer, we have a frequency band of width 1/tD. Since usually

tD << TR, it appears at first glance that the width of the resonance

line should increase from 1/T to 1/tD. Actually, however, the width

remains practically constant, but the form of the line changes.

This unexpected result is explained as follows. The alternating

magnetic field can be represented in the form

F(t) =f(t) e'lt 4f' (t) e'I", (6.12)

where f(t) is a modulation factor which, however, cannot be regarded as

a perfectly random function of the time. After a time T, each electron

experienced a large number of individual pulses, separated by unequal

intervals. The pulses arise near the surface of the metal, where the

amplitude f(t) is large. During the intervals between the pulses, the

electron is for the most part away from the surface, where f(t) is

close to zero. The decisive facts are as follows: 1) there is a large

probability that the electron will encounter the surface of the metal

many times during the time r; 2) every time that the electron approaches

the surface, the phase of f(t) assumes the same value, and consequently
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the integral of f(t) taken over the time interval between two pulses

differs from zero.

Let us examine the spectral composition of F(t). Each pulse pro-

duces a spectrum distributed with approximately equal intensity over a

band of width 1/tD Owing to factors 1) and 2), the interference be-

tween the spectra produced by a large number of pulses causes a cen-

tral maximum, corresponding to the frequency v, to become separated

within a band of width l/TD. The interval between two successive pulses

is a random quantity, which can assume values from zero to T. There-

fore, if we average the spectrum of each electron over all the elec-

trons, we obtain a curve with a flat maximum of width l/TD, on which

is superimposed a sharp peak of approximate width l/T.

We present the results of Dyson's calculations. In addition to

the time parameters T and tD which we have already encountered, we

find it useful to introduce a third one, namely the time tT needed by

the electron to traverse the entire metal specimen. If the metallic

particles are so fine that tT << tD, then the skin effect is negligible

and the power absorbed by the paramagnetic material in the volume V

can be represented, in accordance with (1.9), (1.19), and (5.2), in

the following form:

PV--- Z'vH 'VvoXsc
I + s,(-v.)., (6.13)

We assume here and throughout that there is no saturation; thereupon

we assume that in the metal T2 = r. In addition, we neglect here and

in what follows the nonresonant absorption proportional to g2 (see

§§1.4 and 5.1).

In the opposite case, when tT >> tD, it is necessary to distin-

guish in the solution of the problem concerning the form of the reso-

nance line in metals between regions of normal and anomalous skin ef-
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fect. In the former case the depth of penetration of the alternating

field into the metal is determined by the classical value 6 = /27,

where a is the electric conductivity of the metal, while in the latter

case the depth of penetration is characterized by the mean free path X.

We first consider the case of normal skin effect. The general formula

for the absorbed power is

2c P {f /'-(- I)+ I -2R'9x

X[_I_+ 2,R' - 2xR4 (+ R2,3 ((' -. I)*+ 41
X[ 2.

R~~~~( (I+x)X[(614

where
I I

x -2 ( + - 1) , R =- - ( ,)T _n1SI I it T

and A0 is the area of the metal surface. This formula can be simpli-

fied for certain cases of practical importance.

Let us assume that tD/ << 1. If this condition, which applies to

metals with high conductivity (low temperatures and narrow lines), is

fulfilled then, accurate to quantities proportional to R, we have
I I I

[(1+3)2 •(6.15)
-" (l+ x')'

If tDr >> 1, which holds true when the diffusion of the magnetic

dipoles is very slow, then (6.14) assumes the form
I I --2 (w - .

P, =[i'v11 (BAO) vex$ 1.,-2v-e (6:62 1 + 4U0 (v -) (6.16)

This formula was derived already by Bloembergen [23], who investigated

the influence of skin effect on the form of the resonance line in the

case when diffusion does not play any role. The present case is en-

countered when one deals with paramagnetic resonance in metals, brought
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about by paramagnetic impurities, nuclear spins, or the core of the

crystal lattice (transition metals).

At low temperatures the skin effect becomes anomalous. If we as-

sume furthermore that tDr << 1, then the formula for the absorbed

power assumes the form

(z - , (l+ ,'I I

P, ('I'SA)* vool€. 6 tR { (Z , ( ~2±1L +
(I +x') 1

s I

+ ZjZ2U, +,,') T 7f (6.17)

( + X') 2

where Z1 and Z2 define the complex impedance Z = Z1 + iZ 2 .

1- "Many authors have rigorously established

-*.2 "and developed the theory of paramagnetic reso-

nance under conditions of both normal and

anomalous skin effect. By means of a bril-
-4~ --10 23 4

-- liant method using the kinetic equation for

the statistical conduction electron density

4.1I I operator, Silin [24] derived for the magneti-
- -1

zation vector the differential equation which

Fig. 6.1. Paramag-
netic resonance ab- served as the basis for Dyson's work. Lif-
sorption in a thick shits, Azbel, and Gerasimenko (25], who de-
layer of metal. The
curves show the de-
pendence of the ab- rived independently of Silin an analogous
sorbed power Pv on kinetic equation, carried out a general anal-

the quantity y(H0 - ysis of the behavior of the conduction ele-

- H*) for variousvalues of R.u 1) -R;
v f2) R = . , trons in a constant magnetic and in an arbit-
=3); 2).
3) R = 0rary alternating electron magnetic field.

From among the many results which they obtained, we note that

they calculated the paramagnetic resonance line form under saturation

conditions. It is interesting that resonance saturation in bulky spec-
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imens calls for much larger amounts of power

than in the case when the skin effect is in-

44 significant. The question of paramagnetic

resonance in superconductors is considered in

7 [26] where, in particular, it is shown that

J 4 J L Ithis effect is impossible in bulky conductors.

Let us proceed to compare the theoreti-Fig. 6.2. Paramag-

netic resonance ab- cal results with the experimental data, which
sorption in a thick
layer of metal. are cited principally in [8]. Figure 6.1
Curves showing the
dependence of the shows the characteristic curve of paramagnetic
derivative dPId resonance absorption in a thick layer of metal.

of the absorbed
power with respect
to the field on the We see that the curve is the result of a cer-
quantity y(H0 - H*)T tain superposition of the usual curves for X'

for various values
of R. ) lR = c; 2) and X". Figure 6.2 shows an analogous curve
R = 1; 3) R =o.

for the derivative of the absorption with re-

4_

0'4 - 49 ,

.41

Fig. 6.3a. Dependence Fig. 6.3b. Dependence

of the ratio A/B on of the ratio A'/B' on

R = (tI/,[)l/2. R = (t,/ )1/2.

spect to the field, dPv/dH, which is frequently measured in the experi-

ments. For comparison with experiment, it is convenient to trace the

values assumed by the ratio A/B or A'/B'. Figure 6.3a shows the varia-
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tion of these ratios as functions of R = (t D/r)1/2. It is easy to vary

R over a wide range by changing over from room temperature to helium

temperature. For sodium and beryllium, the specimen surfaces of which

were very smooth, the experimental curves are quite close to the the-

oretical ones. For other metals, discrepancies were observed apparently

connected with the appreciable variation of the diffusion time tD re-

sulting from unevenness in the metal surface.

The experimental values of A/B can obviously be used to determine

the diffusion times tD' The diffusion time measured in this fashion

for beryllium turned out to be in good agreement with the value ob-

tained with the aid of (6.11).

Knowledge of the ratio A/B or A'/B' is very important also because

it makes possible separation of the effect exerted on the conduction

electrons from the effect due to the paramagnetic impurities. It is

seen from Fig. 6.3b that for the conduction electrons the ratio A?/B'

always exceeds 2.7. It can be shown that for impurities A'/B' < 2.7.

For alkali metals the depth of penetration of a field of frequency

3"108 cps at a temperature 400K becomes equal to the mean free path.

It is therefore understandable why the experimental absorption curve

obtained for sodium at 4°K corresponds to Formula (6.17), which holds

true under the conditions of anomalous skin effect.

§6.3. Transition Metals

We can expect the paramagnetic resonance due to the atoms that

form the core of the crystal lattice to be observable in transition

metals. The first positive result in the case of the iron-group ele-

ments was obtained in copper-manganese alloys containing from 11 to

0.07% manganese (27, 28]. The choice of the substance was dictated by

the following considerations: a) the conduction band of copper has a

simple structure, since it contains 4s electrons with isotropic effec-
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tive mass close to the mass of the free electrons; b) from data on the

static susceptibility one can conclude that two 4s electrons of the

manganese atoms are included among the particles that fill the conduc-

tion band, and therefore the manganese ions are in the 6s5/2 state;c)

by virtue of the fact that the manganese ions are in the S state, we

can expect those mechanisms of spin-lattice relaxation, the effect of

which depends on the magnitude of the spin-orbit coupling, to be of

little effectiveness; d) we can expect the paramagnetic coupling be-

tween the manganese atoms to be due to indirect ad exchange forces.

The operator of ad exchange interaction has the simple form

.(6.18)

where 9 pertains to the spin of the manganese ion, and A pertains to

the spin of the conduction electron. On the basis of optical data con-

cerning the magnitude of the exchange interactions in the free man-

ganese atom, we can estimate the sd coupling constant at I =-710
-13

erg. The operator (6.18) has the same form as the operator AI of the

hyperfine interaction between the conduction electrons and the nuclear

spins of the metal. This interaction, as is well known, determines the

form of the paramagnetic nuclear resonance line in metals [17]. It

brings about, first of all, the so-called Knight shift [29] of the po-

sition of the resonant peak; owing to the magnetization of the conduc-

tion electrons under the influence of the external magnetic field HO,

the nuclear spins will be acted upon not only by this field but also

by the internal field HA = 'Me, where

- -'N_. (6.19)

and Me is the length of the magnetization vector of the conduction
AA

electrons. Second, the AU interaction gives rise to the main mechanism
I-

of spin-lattice relaxation.
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Applying the deduction of nuclear theory to our case, we obtain

for an alloy containing say 5% manganese the following formula, which

determines the relative change in the S factor:

a 12 (6.20)

The formula for the spin-lattice relaxation time (6.5) can be rewrit-

ten in the form

(6.21)

The experimental investigations were carried out at wavelengths

3.3 and 1.2 cm in the temperature interval from 2 to 300OK. The values

of the g factor corrected for the line form distortion by the skin ef-

fect, using the method indicated in the preceding section, turned out

to be very close to 2. On the other hand, the measured width of the

resonance line turned out to be approximately 5 times smaller than the

value given by Formula (6.21). Thus, if the exchange sd interactions

do indeed determine the magnetic properties of the alloys which we are

considering, then their magnitude should be approximately one order of

magnitude smaller than in the case of free atoms.

The splitting of the spin levels by the electric field of the

crystal could not be discerned at all experimentally; the reason for

it is that the screening action of the conduction electrons makes these

splittings very small. Nor was it possible to observe the hyperfine

structure of the absorption lines, a fact which apparently indicates a

very weak s-configuration interaction.

Along with copper-manganese alloys, silver-manganese and magnesium-

manganese alloys were also investigated. All these alloys acquired an-

tiferromagnetic properties at low temperatures.

Let us proceed to consider the rare earth metals. Experimental

data on the paramagnetic resonance of this group of transition metals
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are exceedingly scanty (30, 31] and do not allow us to make reliable

theoretical generalizations. Some theoretical conclusions are given in

(32].

With respect to their magnetic properties, the rare earth element

metals occupy a special place, for the paramagnetism of these metals

is almost completely due to the 4f electrons which lie deep inside the

atoms; the conduction electrons exert a negligible influence on the

magnetic susceptibility. Because of this we can assume that the gen-

eral methods for calculating the paramagnetic properties, developed

and applied successfully to the salts of the rare earth elements, are

applicable in first approximation also to metals. The interpretation

of the paramagnetic resonance spectra for rare earth metals becomes

simpler by the fact that, unlike the salts, the symmetry of the in-

ternal electric field of a metal always coincides with the symmetry of

the crystal lattice.

Of particular interest are the paramagnetic absorption lines, the

positions of which are independent of the direction of the static mag-

netic field relative to the crystal axes, since the available experi-

mental data pertain only to polycrystalline specimens. Such lines can

appear in crystals that have a cubic lattice, for it is easy to show

that if doubly or triply degenerate energy levels are produced under

the influence of the cubic-symmetry electric field, then further split-

ting of these levels by a weak magnetic field will be independent of

the direction of this field relative to the cube axes. Among the rare

earth metals possessing a cubic lattice are p-cerium, p-praseodymium,

europium, and ytterbium. The theoretical conclusions concerning the

spectrum of 0-cerium turn out to be in good agreement with the experi-

U" mental results. It was assumed in the calculations that the metal atom

lacks three electrons. This assumption follows from data on the static
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susceptibility and is confirmed here directly.

Prom among the metals possessing hexagonal lattices, we shall

t dwell primarily on a-cerium, neodymium, and dysprosium, the ions of

which have odd numbers of electrons.* The energy levels produced in

these ions by the electric field of the crystals are doubly degenerate.

If we make certain natural assumptions we find that there should exist

only one absorption line, the position of which is determined by the

spectroscopic splitting factor

g==-go t-k +-q sin, 0 -- -jl -- 3 (6.22)

where go is the Lande factor for the free ion and Y is the angle be-

tween the direction of the static magnetic field and the crystal hex-

agonal axis. Calculation shows that for a polycrystalline specimen the

absorption line intensity is proportional to

2q sin' &

Elimination of - from Fornulas (6.22) and (6.23) enables us to estab-

lish with the aid of (1.2) the dependence of the magnitude of the para-

magnetic absorption on the intensity of the static field. The theoret-

ical curves obtained in this fashion are in satisfactory agreement

with the experimental absorption curves for cerium and neodymium.

The only rare earth metal with a tetragonal lattice, samarium,

should have the same spectrum as a-cerium, provided very simple as-

sumptions are made concerning the coefficients that determine the po-

tential of the crystalline field. Metals whose ions contain an odd num-

ber of electrons (a-Pr, Tb, Ho, and Tm) have a hexagonal lattice. It

is easy to show that in this case the probabilities of the magnetic

dipole transitions between nearby Zeeman sublevels are equal to

zero in first approximation.

If it is assumed that the theory of spin-lattice relaxation de-
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veloped above for the rare earth element salts (see §5.3) is also ap-

plicable to metals, then we obtain for the time T values that are sev-

eral times larger because the density and velocity of sound in metals

are appreciably larger; in addition, it is necessary to bear in mind

that the electric field inside metal crystals is much weaker, owing to

the screening effect of the conduction electrons. This probably makes

it possible to observe paramagnetic resonance in rare earth metals at

room temperature.

Gadolinium, the triply charged ion of which is in the S state,

occupies a special position. Gadolinium is paramagnetic at temperatures

above 160C. The measurements of resonant absorption [30], made at a

frequency 2.43.1010 cps and at a temperature 105.50C, have shown that

g = 1.95, and the line width is independent of the temperature and has

a value of approximately 4000 oersted.

The question of resonant absorption of ultrasound by rare earth

metals was also considered theoretically [33). In some cases this ef-

fect should be quite appreciable.

§6.4. Impurity Semiconductors

In the first work [34] devoted to paramagnetic resonance in im-

purity semiconductors, the effect was established at a frequency v =

= 9.109 cps in powdered specimens of n-type silicon, containing be-

tween I. 18 and 2.1018 phosphorus atoms per cubic centimeter. To elim-

inate the skin effect, minute silicon grains, with radius one order of

magnitude smaller than the depth of the skin layer, were embedded in

paraffin. The measurements were made at temperatures between 4 and

3000K. One absorption line was observed with Lorentzian shape. The po-

sition of the absorption peak was independent of the temperature and

was determined by a factor g = 2.001 + 0.001. The width of the reso-

nance line increased rapidly with temperature from about 2 oersted at
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40K to 30 oersted at 300 0K. When working with a klystron generator, no

paramagnetic resonance saturation could be observed even at helium tem-

peratures. We can therefore conclude that the longitudinal relaxation

time is T1 < 10-3 sec at a temperature 40 K. Willenbroek and Bloember-

gen [351 have observed at this same alternating field frequency para-

magnetic resonance in both n-type and p-type silicon. The measurements

were made at 780 K, and the impurity concentration was varied from 5 x

x 1017 to 5"1018 atoms per cubic centimeter. The position of the ab-

sorption peak was the same for electrons and for holes, and corres-

ponded to g = 2.00. The intensity of the absorption line was propor-

tional to the impurity concentration.

Fletcher et al. investigated paramagnetic resonance at helium

temperatures in single crystals of silicon doped with phosphorus, ar-

senic [36], and antimony [37]. At concentrations of about 1018 atoms

per cubic centimeter, one absorption peak is observed, the position of

which varies somewhat depending on the slope of the static magnetic

field relative to the crystal axes. When the field is parallel to the

[100] axis, we have for the case of arsenic g = 2.0004 + 0.0005. The

line width was always less than 3 oersted.

From all the foregoing we can conclude that paramagnetic reso-

nance absorption is due to the conduction band electron spins. This

conclusion follows first of all from the possibility of observing the

effect at temperatures corresponding to an average energy of thermal

motion much larger than the ionization energy of the impurity atom (ap-

proximately 0.05 ev). Other evidence in favor of this conclusion is

the relatively high impurity concentration in the tested specimens and

the absence of hyperfine splitting of the resonance line.

The broadening of the paramagnetic absorption line has apparently

a spin-lattice character. Indeed, it is easy to calculate that the
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width due to magnetic dipole interactions of the electron spins should

be of the order of 0.1 oersted. Hyperfine interactions of electron

Vspins with phosphorus nuclei and with nuclei of the odd isotope of
silicon* cannot make a noticeable contribution to the line width, ow-

ing to the rapid motion of the electrons. Nor can surface recombina-

tion of the electrons andholesplay any appreciable role, since this

process is quite slow.

Elliott [18) considered the influence of spin-orbit interaction

of conduction electrons on the magnitude of the a factor and the spin-

lattice relaxation time of semiconductors. He found that the change in

the g factor is
Ag T h-,P (6 .24 )

where AE is the interval between the lowest conduction band and the

nearest band having the same transformation properties. If it is recom-

mended that the spin-orbit coupling constant for a silicon atom is

X = 100 cm-1 and that experiment yields 4g = 3.10 - 3 , we obtain with

the aid of (6.24) a sensible value of approximately 4 ev for AE.

The spin-lattice relaxation time can be calculated from the fol-

lowing formula (see (6.7))

R (6.25)

if Lg is small. For n-type silicon, the impact time at high tempera-

tures is independent of the impurity concentration and its value is (38]

10-,rT ~sec. (6.26)

Hence T - 10-9 sec at T = 3000K, i.e., the line width is equal to ap-

proximately 50 oersted, which is in good agreement with the measured

value of approximately 30 oersted. For germanium, the constants -R and

X are larger than for silicon by 5 and 20 times, respectively. Conse-

- 326 -



quently, the line width of germanium should be approximately 102 times

larger than for silicon, which apparently explains the negative re-

4 suits of the first experiments with germanium.*

At low temperatures and low impurity concentrations, the paramag-

netic resonance absorption is due to the spins of the electrons bound

to the donors. This fact manifests itself most clearly in the presence

of a hyperfine structure of the resonance lines, which indicates that

there is a definite coupling between the electron spin and the moment

of the impurity atom nucleus. Measurements [36] carried out at a fre-

quency v = 2.4.1010 cps at a temperature of 4.2 K, on specimens con-

taining from 5.1016 to 1018 atoms of arsenic per cubic centimeter,

have disclosed four equidistant linos in accordance with a nuclear spin

of 3/2 for As75 . The interval between neighboring hyperfine components

is approximately 73 oersted, and the width of each component is about

10 oersted. If silicon is doped with acceptors (boron), the magnitude

of the effect is decreased. In addition, it was established that prior

elastic deformation of the semiconductors at a temperature of 10000 C

leads to a considerable increase in the intensity of the absorption

lines; the nature of this phenomenon is not quite clear.

In the case of phosphorus-doped specimens, two conponents spaced

42 oersted apart were observed, in conformance with a value of 1/2 for

the nuclear spin of pl.

In specimens containing 4.1017 atoms of antimony per cubic centi-

meter, owing to the presence of two odd isotopes Sb12 1 and Sb12 3 with

nuclear spins 5/2 and 7/2, respectively, the paramagnetic spectrum con-

sists of 6 + 8 hyperfine components [37]. The ratio of the intensities

of these two groups of lines corresponds rigorously to the percentage

content of the given isotopes, while the total splittings of these

line groups (69 and 38 oersted) correspond exactly to the magnetic mo-
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ments of the nuclei Sb1 21 (G = 3.3600N ) and Sb123 (q = 2.54 70N).

An attempt to observe paramagnetic resonance in semiconductors

containing 1017 atoms of boron and 3.1017 atoms of aluminum per cubic

centimeter yielded negative results.

Honig and Kip [39] observed paramagnetic resonance at a frequency

v = 8.8.109 cps in the temperature range 4-200 K, in a silicon specimen

containing 7"1016 atoms of lithium per cubic centimeter. No hyperfine

structure was established. The position of the single absorption peak

corresponded to g = 1.999, the line width was 1.5 oersted, and the

line shape was Gaussian.

Kohn and Lttinger [40] undertook to ascertain to what degree the

experimentally obtained values of the hyperfine splittings of paramag-

netic resonance lines are compatible with the assumption that the hy-

perfine structure is due to the interaction between the donor nuclei

and the electrons localized near the donors and situated in well-known

donor states with ionization energy 0.04-0.05 ev. The total hyperfine

splitting (AH)HFS of the energy level, expressed in oersted, can be

represented in the form

(AHI(o)I';. (6.27)

where PD is the nuclear magnetic moment, *(r) is the wave function of

the electron bound to the donor, and r is the radius vector drawn from

the nucleus to the electron. Table 6.1 lists the experimental values

of I*(0)12.

The function *(r) obeys the Schroedinger equation

2(6.28)

where V(r) is the potential energy of the electron in the periodic

field of the crystal lattice of silicon, and U(r) is the initial energy

that arises when one of the silicon atoms is replaced by an impurity
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atom. At distances large compared with interatomic distances we have

U(r) = -e2/er, where e is the dielectric constant of the medium; for

tsilicon, e = 13. The solution of (6.28) entails great difficulties
since, first, the band wave function is unknown for silicon, and, sec-

ond, the introduction of the concept of the electron effective mass is

not allowed near the donor. As a result of detailed calculations under-

taken for phosphorus, it was found that *'(0)12 = 0.4.1024 cm-3 , which

is in much better agreement with the experimental data than would be

expected from thp assumptions made. A rough estimate gives a ratio

ti * ' = 0.004. So small a value of I*(0)I2 fully explains

the negative results of attempts made to observe the hyperfine struc-

ture of the absorption line in silicon doped with lithium.

TABLE 6.1

Experimental Values of *(0)1 2

1I" 12

Li1 7 2,17 0,055 0,056 38,64.10' 0,1

pal 2,26 0,44 7,8 560 1502

A 0,957 1,80 14,0 56 1000

Sb'" - 1,37 1,20 13,0 41 20002

Sb'" -- 0,724 1,20 7,0 97 8202

1) cm"3 ; 2) erg; 3) min.

During the observation of the hyperfine structure of paramagnetic

resonance spectrum in silicon containing impurities of group V ele-

ments, weak satellites, located halfway between each pair of hyperfine

components, were observed in addition to the 21 + 1 lines [36, 37].

Slichter [41] has shown that such satellites should appear if one ad-

mits of exchange interactions of the type Il 2 between an electron

-329-



pair belonging to two donors that are accidentally in the vicinity of

-Vo each other. From this interpretation of the nature of the satellite it

follows that: a) the intensity of the central satellite is twice that

of the outer ones; b) the intensity of the satellites should depend on

the concentration of the impurities: at low concentrations the inten-

sities should be proportional to the concentration, and at large con-

centrations additional satellites should appear, connected with fam-

ilies of three or four electrons; c) if I ~ kT, then the intensity of

the satellites should depend strongly on the temperature of the semi-

conductor, approximately as exp(-I/kT); d) a dependence on the mechan-

ical working is also possible, if this working influences the charac-

ter of the donor distribution.

In the experiments undertaken to check on Slichter's theory [42],

the measurements were carried out at 1.2 0 K and with an alternating

field of frequency v = 9.109 cps using two samples of silicon, contain-

ing 1017 and 4.1017 phosphorus atoms per cubic centimeter. Additional

absorption maxima, corresponding to the exchange between a pair, a

triplet, and a quartet of electrons, were observed in the positions

predicted by the theory.

Let us proceed to an analysis of the spin-lattice relaxation of

the electrons localized near the donors. As a result of experiments

made on silicon samples containing up to 1017 impurity atoms per cubic

centimeter, it was established that the spin-lattice relaxation time

at helium temperatures amounts to minutes [43, 44]. Such large re-

laxation-time values are usually characteristic of nuclear spins. With

increasing impurity concentration, the time T begins to decrease rap-

idly, apparently owing to the stronger interaction between the bound

electrons and the conduction band electrons. The correctness of this

explanation is confirmed directly by the fact that the time T decreases
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to several milliseconds if the semiconductor is exposed to light (45].

The theory of this phenomenon was presented by Fines, Bardeen,

and Slichter (46] and was later developed by Abrahams (47]. The calcu-

lations were made in order to estimate the order of magnitude, and

consequently several simplifications were made: a) the complex wave

function of the bound electron was replaced by the function of an elec-

tron with effective mass m* = 0.3me in a minimal-energy state; b) all

the angular dependences were left out; c) the action of only longi-

tudinal phonons was taken into account. The following were considered

from among the various relaxation mechanisms.

1. Modulation of electron-nuclear hyperfine interaction. Changes

brought about by lattice vibration in the potential energy V(r), which

is contained in Eq. (6.28), manifest themselves on the wave function

and consequently on the magnitude of the interaction between the elec-

tronic and nuclear spins. The relaxation time is

87'-,, (6.29)

where v. is the resonant frequency, A is the hyperfine structure con-

stant, and a is a numerical factor of order 10-100.

Table 6.1 lists the values of Tx for different impurities in sil-

icon, calculated under the assumption that a = 50, V0 = 9"09 cps, and

T = 1.2 K.

2. Modulation of the hyperfine interaction of the bound electrons

with the Si 2 9 nuclei. We designate the relaxation time due to the given

mechanism by TSi. Calculation shows (see Table 6.1) that Tsi/Tx >> 1

in all cases, except lithium. Consequently, this mechanism can be sig-

nificant only for silicon with lithium impurity.

3. Modulation of spin-orbit interaction of the electrons. This

mechanism, which is the most important for the conduction electrons,
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is of little effectiveness in our case, if single-phonon processes are

taken into account. Combination scattering of phonons yields for the

trelaxation time
TLs IOT'". (6.30)

It follows therefore that at temperatures above that of hydrogen, this

mechanism should play the principal role.

4. Modulation of exchange interactions between neighboring im-

purity atoms. At the donor concentrations employed, the mechanism is

quite ineffective.

To explain the dependence of the relaxation processes on the im-

purity concentration, mechanisms were considered, based on the follow-

ing interactions between the bound electrons and the conduction band

electrons:

1) Coulomb interactions; spin reorientation is possible if the

spin-orbit coupling of the electron in the donor state is taken into

consideration;

2) interaction between the bound electron spins and the magnetic

field of the currents produced by the conduction electrons;

3) magnetic dipole-dipole interactions;

4) exchange interactions.

The most effective, in accordance with the calculations, is the last

mechanism, since the spins of the bound electrons are subject after

the exchange, when they enter the conduction band, to the strong in-

fluence of the lattice vibrations. However, even with this mechanism

it is impossible to explain the experimental data. It is possible that

a stronger spin-lattice interaction mechanism, which is not considered

here, exists.

§6.5. Color Centers in Ionic Crystals

It is known that crystals of halides of alkali metals become
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O Q O strongly colored if their stoichiometric 
corn-

Sposition is disturbed in some manner and if

,\- ) they contain an excess of metal atoms. It was

0- 03O established that the reason for the coloring

is the occurrence of color centers. There ex-
Fig. 6.4. In an al-
kali-halide crystal, ist various methods for obtaining colored
the F center is an
electron localized crystals: passage of x-rays and y rays, bom-
near the vacancy
produced after a bardment with a and p particles, neutrons, or
negative ion is re-
moved from the crys- protons; passage of current through a crystal
tal lattice site.

placed between metallic electrodes; heating

the crystal in vapors of alkali metals, etc. We note that the color

centers are produced not only in alkali halide salts, but in other di-

electric and semiconductor crystals. The experimental and theoretical

study of various types of color centers has been the object of a

large number of investigations (see, for example, the reviews [48]).

In most cases the color centers are also paramagnetic centers, so

that their properties can be investigated by magnetic means, particu-

larly with the aid of paramagnetic resonance.

From among the various types of color centers, the best investi-

gated were the F centers, which have a characteristic light absorption

band. It can be regarded as proved that the F center in an alkali

halide crystal is an electron localized near a vacancy produced after

a negative ion has been removed from the crystal lattice site (Fig.

6.4). Thus, a qualitative analogy exists between the hydrogen atom and

the F center, since the vacancy of the anion can be identified with

the positive charge.

The first to observe paramagnetic resonance on F centers was

Hutchison [49], who used for this purpose crystals of LIF bombarded

for 24 hours by a neutron flux of 1012 particles/sec.cm2 . The measure-
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ments were made at a frequency of 9350 megacycles; one absorption peak

was observed, the position of which corresponded to g = 2.00, while

its width was approximately 160 oersteds. The effect was lost when the

crystal was bleached by heating it to 500 C. Later, the circle of in-

vestigated substances was greatly broadened. A summary of the principal

experimental results is given in Table 6.2.

As can be seen from the table, the values of the spectroscopic

splitting factors are very close to the . factor of the free electron,

thus evidencing the insignificant role of the orbital magnetism. Ex-

periments show that the resonance line has a Gaussian form and that

its width in alkali halide crystals is independent of the F center

concentration. From this we can conclude that the dipole-dipole inter-

actions of the electron spins of the F centers do not play a major

role in the absorption line broadening. This conclusion is reached by

simple calculation which shows that at the experimentally investigated

F center concentrations the width should not exceed 0.1 oersted. It is

seen from Table 6.2 that the experimental values for the line widths

of the alkali halide crystals are 2 or 3 orders of magnitude higher.

Kip, Kittel, and others [53] have suggested that the resonance

line broadening of the F centers is due to hyperfine interactions be-

tween the electron localized near the vacant lattice site and the nu-

clei of the surrounding atoms. This hypothesis was irrevocably proved.

Measurement of paramagnetic resonance in KCl crystals [53], both with

natural mixture of potassium isotopes and strongly enriched with the

isotope K4l, have shown that the widths of the resonance lines are

quite different in the two cases, and the ratio of these widths cor-

responds precisely to the values of the magnetic moments of the K
39

and Ki4 nuclei.

Portis [58] measured by the saturation method the longitudinal
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TABLE 6.2
1 1Be~er-,o K&UoaqcTrO F-

1 U,- a C. 3 cnaw oKPAUM,.. 4 4axrop " 6 nT.epa.yp

7LiF 1016-10" l'oTok HeATpoKoD, IIpOTOHOB; 2,008:0,001 77-160 [49. 54 55, 60, 79. 108]
peMFreosmoue Ay4.

NaCi 5.1016 - 1018 1,987 162 [53]

NaF 2,0021:0,0001 [55]

KBr -i " -AY ; SAeMTpoANITqecKHR 1,980 146 [50, 51, 52, 53]

KCI 5 10'-- 10 16 9 PeaI:reHoDc'He Xy'w 1,995±1 54 [51, 52, 53, 59J

KIICI 5.101 4 1,995±I 36 [53]

KI - - 1,971:0,001 200 [109]
10.

MgO i01-1010 loTo HeATpoao*, nporpesa- Z0028.0,0001 0,7-0,9 [56]
He a napax

NaNO, 2,000±0,003 [571

1) Substance; 2) number of F centers per cubic centimeter; 3) method
of coloring; 4) g factor; 5) line width in oersted; 6) literature; 7)
neutron or proton flux; x-rays; 8) 7 rays; electrolytic; 9) x-rays;
10) neutron flux, heating in vapor.

relaxation time for F centers of a KC1 crystal at room temperature,

and obtained T1 = 2.5"10-5 sec. These experiments have shown that the

broadening is uneven in character, as should be the case if it is due

to hyperfine interactions (see §5.8). We note that questions concern-

ing the nature of spin-lattice relaxation of colored crystals or con-

cerning the dependence of T. on the temperature, on the static mag-

netic field intensity, etc., have as yet not been investigated either

theoretically or experimentally.

Lord (55] succeeded in resolving the hyperfine structure of the

F center resonance lines in Li and NaF crystals. A large number of

components was observed, due to the interaction between the spin of

the F electron and the nuclei of the six surrounding alkali metal atoms;

- 335 -



interactions with the following layer of fluorine atomic nuclei yield

an unresolved structure and determine the width of the resonance line.

The experiments make it possible to determine the hyperfine interac-

tion constants A and the values of 1*12 on the nuclei of the alkali

metal and fluorine atoms (see Formula (6.27)). The corresponding data

are listed in Table 6.3, where the constants A1 and A2 are in oersteds.

TABLE 6.3

Beze. oo. JAI
C T B O n o A .T.. A s

LiF 14,1±0, 1,53.10" 4,8±0O,5 0,21.I1"
Na 37 6,05. 10" 8,6±0, 0,39. 10"

1) Substance; 2) (alkali metal);
3) (alkali metal) cm-3 ; 4) cm-3.

Feher (59] used a double resonance technique (see §8.2) to dis-

close the hyperfine structure of the paramagnetic resonance line in a

colored KCI crystal. The measurements were carried out with samples

containing 2"1017 centers per cubic centimeter at a temperature 1.2 0K;

the electron resonance absorption line was observed at a frequency

v - 9000 megacycles and had a width of approximately 150 megacycles,

while the frequency of the nuclear resonance was varied from 10 to 100

megacycles and the width of the nuclear resonance was approximately

20,000 cps. Since the nuclear resonance line is approximately 7500

times narrower than the electron line, it is natural for the nuclear

resonance to influence noticeably the form of the electron resonance

line, in spite of the relatively low intensity of its absorption lines.

The results obtained in this fashion can be explained with the aid of

the spin Hamiltonian

S "---a( i S)+ b (3 ,-i S)-+-Q' -- I(1+ 1)], (6.31)

- 336 -



from which it follows that the resonant frequencies due to the nuclear

transit ions are

hv ==± qs Pv#0 + -- [a + b (3cos'O - 1)1 ++6. q 3cO0-1 i
where 0 is the angle between the field H0 and the axial symmetry axis.

If this formula is used, then it follows from the experimental data on

the nuclear resonance frequencies that (aA) = 2.16 megacycles, (b/h) -

= 0.95 megacycles, and (Q'/h) = 0.20 megacycles for K3 9 and (a/h) =

= 700 megacycles, (b/c) = 0.5 megacycles for C13 5 . The value of a in

the case of K3 9 is in good agreement with the value obtained earlier

from the width of the resonance line with unresolved hyperfine struc-

ture. Lord [60] applied Feher's double resonance technique to F cen-

ters in LiF crystals. He succeeded in making the previous results con-

cerning the hyperfine interaction between the F electron and the nuclei

of the second coordinate sphere more precise.

It is clear from all the foregoing that it would be of undoubted

interest to measure paramagnetic resonance in crystals containing only

atoms whose nuclear spins are equal to zero. Wertz and his coworkers

[56] came close to solving this problem by setting up paramagnetic

resonance experiments on F centers in MgO crystals. These crystals, to

be sure, cannot be classified as ionic, but we shall consider them in

the present section, since the properties of interest to us are inde-

pendent of the character of the chemical bond.

Two methods were used for coloring single crystals of MgO: bombard-

ment with a flux of neutrons of intensity (1-3).1019 particles per

square centimeter (between 5 and 7 neutrons are necessary to form one

center) and heating in magnesium vapor to a temperature of 15000 C,

followed by rapid cooling and x-raying.

Only the odd isotope Mg25 the abundance of which in natural mag-
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nesium is 10 or 11%, has in magnesium oxide a nonzero nuclear spin.

Consequently, 53% of the magnesium isotope octahedra surrounding the

vacancy contain only the isotopes Mg and Mg 26 , 36% of the octahedra

contain only a single Mg2 5 atom, and 10% contain each two Mg2 5 atoms.

One can expect the paramagnetic resonance spectrum to consist of a

narrow bright central line, a broad weak line containing six hyperfine

components (I (Mg25 ) = 5/2), and a family of 11 even weaker lines. The

central line actually turns out to be very narrow, approximately 0.7

oersted wide; its position corresponds to the g factor, which coincides

accurate to 0.0001 with the value for the free electron. The hyperfine

structure has a rather complicated character, owing to the anisotropy

of the electron-nuclear coupling constant.

From the value of the isotropic part of the hyperfine structure

we can conclude with the aid of (6.2) that j#(Mg)1 2 = 0.276.1024 cm- 3 ,

whereas in the free doubly charged magnesium ion *$(Mg2 +)12 = 17.1 x

x 1024 cm-3 . It is interesting to compare these values with the cor-

responding values for potassium in the KC crystal: for the F center

we have I*(K)12 = 0.70.1024, and for the free potassium ion *(K)12 =

= 7.5.1024 cm"3 . From these data we see that the electron is localized

in the MgO crystal inside the vacancy to a considerable greater degree

than in KCI, and this apparently is explained by the relatively larger

Madelung energy in divalent crystals.

Paramagnetic resonance on F centers can be used for certain prac-

tical purposes. By measuring the relative intensity of the paramagnetic

absorption lines it becomes possible to determine the number of F cen-

ters with an accuracy which is I or 2 orders of magnitude higher than

the accuracy of all other methods. Gordy [61] points out that paramag-

netic resonance absorption on F centers can be used to construct a

meter to measure the intensity of neutron and x-ray fluxes.
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Let us proceed to consider the theory of paramagnetic resonance

on F centers. As is well known, in the general theory of F centers,

two models are used, the continual [62] and the orbital [63]. It is

shown in (59, 64] that even elementary calculations based on the or-

bital model yield the correct order of magnitude of the displacement

of the g factor and the width of the resonance line. According to the

orbital model, the F center electron is a valence electron, bound in

succession to each of the six atoms in the nearest surrounding of the

vacancy. In other words, the wave function of the F electron is in

first approximation a linear combination of the s functions pertaining

to the metal atoms situated around the vacancy:

6 f.(633)

It is assumed here that the * functions of the different atoms do not

overlap one another. Since a negative vacancy is equivalent to a pos-

itive charge, it is necessary to tal,- into consideration the polariza-

tion of the metal atoms under the influence of the given charge. Cal-

culation by a perturbation method shows that a p function is added to

the s function of the valence electron, so that for one of the atoms

we have

P-C '- 4 (6.34)

where s is a numerical factor smaller than unity and C is a normaliza-

tion factor. The wave functions of the other atoms are constructed in

analogous fashion. Calculations with the aid of hydrogen functions

yield e = 0.9. In the next approximation it is necessary to take into

account the spin-orbit coupling XLS, as a result of which the * func-

tion assumes the form
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-- 2A)+ + U--) "(6.35)

Here A is the interval between the s and levels. Calculation with

the aid of this function yields the following expression for the dis-

placement of the g factor (64]:

A 3- A. ., (6.36)

If we use the kmown value for potassium A = 13,200 cm-1 and X = 38 cm- ,

we obtain Ag = -1.710 "3 , which coincides in order of magnitude with

the experimental value Ag = -0.007 + 0.001.

To calculate the resonance line broadening due to the hyperfine

interactions of the F electron with the nuclei of the atoms surround-

ing the vacancy (53], we employ the Hamiltonian

A, (6.37)

where

=- 16 X I?).- (6.38)

Here i is the magnetic moment of the nucleus of the i-th atom, I is

the spin of the given nucleus, and *(i) is the value of the normalized

wave function of the electron at the location of the i-th nucleus.

With the aid of the Hamiltonian (6.37) we can readily calculate the

second moment of the paramagnetic resonance absorption line; its value

is

M. A 6/ + 1 (6.39)

It can be shown that the absorption line has a nearly Gaussian

shape, and consequently, the line width is Av = 2.36 WiK. The hyper-

fine structue will be anisotropic, owing to the presence of the #P

functions in Expression (6.35). If we take into account only the prin-

cipal isotropic part of the hyperfine structure, then we readily ob-
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tamn from (6.35), (6.38), and (6.39)

.. 2,.38 ) (-+ ) A. (6.4o)

Here A is the constant of the hyperfine interaction between the elec-

tron and the metal nucleus closest to the vacancy, and I is the spin

of this nucleus. For potassium I = 3/2, A = 0.0077 cm-1 , and the line

width is therefore 50 oersted, which is in splendid agreement with the

experimental value (54 + 2) oersted.

The authors of [53] have also estimated the width by using the

continual model. According to this model, the F center is made up of

an electron moving in a spherically symmetrical potential field, the

center of which coincides with the vacancy, and the wave function of

the electron covers a large number of atoms. The calculated resonance

line width turned out to be several orders of magnitude lower than the

experimental value. It was therefore concluded that the continual

model is incompatible. The correctness of this conclusion was disputed

by several workers [65, 66, 67]. Deygen [67] called attention to the

following important circumstance. Kip, Kittel, et al. use in their

calculations Formula (6.38), in which the value of the wave function

taken for *(i) is the one given by the continual model at the point

where the nucleus i is situated. Yet the formula (6.38), which is due

to Fermi [68], holds true only when the symmetry center of the wave

function coincides with the nucleus, something that precisely does not

occur in the F center, since the nuclei of the ions are shifted rela-

tive to the symmetry center of the wave function by an amount equal to

the lattice constant. The question of the hyperfine interaction between

the electron and a nucleus shifted relative to the symmetry center of

the wave function calls for a special analysis. Deygen offers a solu-

tion of this problem, using for the wave function of the F center the
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following expression [69]:
3 LV

(r) = t (I + tr)e (6.41)

Assuming that the length (1/a) does not far exceed the lattice con-

stant, and therefore confining himself to a consideration of the hyper-

fine interaction with the nuclei of the first coordination sphere, he

obtained for the resonance line width in KCI a value on the order of

1-2 oersted. With an aim toward improving this result, Deygen replaced

the "smoothed" function (6.41) by a so-called detailed wave function

in the form

,I (.) = ~. (6.42)

Here 0 is the volume of the principal region in the crystal and u is

the normalized Bloch wave function of the electron at the bottom of

the conduction band, which, as is well known, represents in the strong-

coupling approximation a linear combination of the atomic wave func-

tions. The line width calculated with the aid of the detailed function

turned out to be equal to 15 oersted, which is already quite close to

the experimental value.

In order to ascertain whether the line width is affected by an

account of relativistic corrections, the usual Pauli equation for the

motion of the electron was replaced in the calculation of the hyper-

fine structure by the Darwin relativistic approximation (70]; the cor-

rections turned out to be negligible. Zevin [71] developed the theory

proposed by Deygen and obtained a general expression for the spin Ham-

iltonian, describing the interaction between the F center electron and

the nuclei of the atoms surrounding the vacancy. Shul'man (72], using

the given spin Hamiltonian, calculated the broadening brought about by

the second coordination sphere, consisting of the halide atoms. For

the KCl crystal, the contribution made by the chlorine atoms to the
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width amounts to 19%.

Gourary and Adrian [73) used a wave function obtained by a simpli-

fied Hartree method to calculate the hyperfine structure of paramag-

netic resonance on F centers. The lattice ions were regarded here as

being point charges. The distortions of the lattice near the vacancy

were also taken into account. The theoretically obtained hyperfine

splittings are in good agreement with the experimental results for LiF.

The method of Gourary and Adrian was applied to calculations of

the isotropic and anisotropic structures of the KCl spectrum [74]; the

theoretical results are in good agreement with the experimental data

of Feher [59]. Adrian [75] pointed out the possibility of establishing

a simple connection between the displacement of the S factor and the

anisotropic hyperfine structure, since both these quantities are de-

termined by the average value of 1/r 3 . Thus, for KC1, starting from

the experimental value of the hyperfine structure anisotropy, theory

yields Ag = -0.0053 while experiment gives Ag =-0. 007. A good agree-

ment with the experimental results of Feher was also obtained by Blum-

berg and Das [76], who used in their calculations of the hyperfine

structure the E factor displacement and the wave function obtained un-

der the following assumption: the vacancy is replaced by a potential

well and the lattice by a system of corresponding point charges.

In developing the theory of paramagnetic resonance on F centers,

we used the de Boer model [62], according to which the F center is an

electron localized near a vacant lattice site. It is universally ac-

cepted that centers of this type are formed in alkali halide crystals.

In silver halide crystals one might think that the F centers would be

of the Hilach and Pohl type [62], i.e., they would comprise metal

atoms that have penetrated the interstices of the crystal lattice.

Glinchuk and Deygen [771 calculated the hyperfine structure of the en-
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ergy levels of an F center of this type, using the NaCI crystal as an

?example. Using the wave functions of both the continual and the or-
bital models, they obtained spin Hamiltonians with which they calcu-

lated the paramagnetic resonance spectrum, the line shapes, and the

line widths. It turned out that the results differ qualitatively from

those previously obtained for the de Boer model. Thus, a study of para-

magnetic resonance uncovers a possibility of choosing between two ex-

isting F center models, something particularly valuable inasmuch as so

far no other effective methods have been proposed for solving this

problem.

Lord et al. [78] have found indirect proof for the existence of

paramagnetic resonance absorption on an M center (a combination of an

F center and a pair of vacant sites). It was established that the sec-

ond moment of the resonance line increases appreciably whenever a LiF

crystal is exposed to x-rays so as to be able to observe in it, by op-

tical means, an increase in the number of M centers compared with the

number of F centers.

Paramagnetic resonance was investigated in greater detail on V

centers [79, 84]. In the studied alkali halide crystals, these centers

were produced by means of x-rays at liquid nitrogen temperatures. Cast-

ner, Knzig, and Woodruff [82, 83], who have made the most complete

study of this problem, interpret their experimental results with the

aid of the following V center model: 1) the x-radiation causes an elec-

tron to break away from the halide ion, and the resultant electron

hole is distributed among two neighboring ions oriented along the [110]

axis of the crystal; 2) the molecular ion X produced in this fashion

(where X stands for the halogen) is connected with neither the vacancy

{" formation nor with the distortions of the crystal lattice.

Paramagnetic resonance was investigated in crystals of LiP, Xcl,
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KBr, and NaCl. The resonance lines had a hyperfine structure due to

the interaction between the electron hole and the nuclei of both atoms,

I forming the X"I molecule. The number and intensity of the hyperfine

components in the LIF crystal agrees with a value I = 1/2 for the nu-

clear spin of fluorine, if one takes into account the selection rules

for the singlet and triplet nuclear spin states; in precisely the same

manner, the spectra of the remaining investigated crystals consisted

of seven approximately equidistant components with intensity ratio

1:2:3:4:3:2:1, which corresponds to a nuclear spin I = 3/2 for the C1

or Br atoms. To interpret the paramagnetic resonance spectrum, start-

ing with the -I molecular ion model, one can obtain a spin Hamiltonian

of the type (6.31) by taking the [110] crystal axis to be the Z axis.

The principal values of the g-tensor components are listed in Table

6.4, which shows also the absorption line widths.

TABLE 6.4

g IMaic H8b
1 WifPsms.

Lip 2Z0227 2,02:34 2,001 ±t 0,0010 12,3,±0,3
KCI 9,(1428 2,0447 '2, A0 :L 0,0001 1,341±0,03
NaC . , 20 5 2,0010 t 0,0001 4,5 _0,1

K1r ,179 Z,175 1,980 j-:0,000 1 ,8s '.0, 1

l Substance; 2) maximum error;3 width, oersted.

The main reason for the broadening of the resonance line are the

hyperfine interactions between the electron hole and the nuclei sur-

rounding the V center. The line shape is nearly Gaussian.

For C12, calculations of the g factor were made by the molecular

orbital method (85], and yielded values close to the experimental ones.

Kfnzig and Woodruff [86] observed paramagnetic resonance in the

KCl crystal on H centers, which have a spectrum similar to that of V

centers, but of more complicated nature. The latter is due to the fact
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that in the case of the H centers the electron hole is shared by four

chlorine ions arranged on a single line.

Kawamura and Ishiwatazi [87] observed paramagnetic resonance on

Z1 centers in KCl crystals. The Z1 centers are produced in alkali

halide crystals in which divalent metals have been introduced. A pos-

sible model of the Z1 center is that of a singly ionized divalent

metal atom, which occupies the place of the alkali metal ion. The ex-

periments involved crystals doped with Ca and Sr atoms in amounts of

approximately 1017 cm-3 . Since the spins of the calcium and strontium

nuclei are equal to zero, there is a deep analogy between paramagnetic

resonance on Z1 and on F centers. The essential difference lies in the

fact that the broadening of the Z1 -center resonance line occurs pri-

marily as a result of hyperfine interactions with the nuclei of the

anions, whereas in F centers the principal role is assumed by the nu-

clear spins of the cations. Measurements have shown that the absorp-

tion line has a Gaussian form, a width Ai = 79 oersted, with g = 1.999.

§6.6. Irradiated Crystals with Covalent Bond

Paramagnetic resonance can serve as an effective method for in-

vestigating imperfections in crystals. This possibility is connected,

first of all, with the fact that the occurrence of many types of im-

perfections in diamagnetic crystals is accompanied by formation of

paramagnetic centers. Second, in paramagnetic crystals, imperfections

of the dislocation type change the intercrystalline field and cause

shifts in the paramagnetic resonance lines and a change in the spin-

lattice interaction. In the last two sections we have considered para-

magnetic resonance due to lattice defects of the inclusion, electron,

or hole type. In the present section we discuss also a few examples

* " and primarily the effect in neutron-bombarded diamond.

Griffiths, Owen, and Ward [88] carried out measurements at fre-
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quencies v = 9000 and 25,000 megacycles in the temperature interval

20-2800 K. The existence of two types of resonance lines was estab-

lished:

a) Isotropic line with a spectroscopic splitting factor g =

- 2.0028 + 0.0006. The intensity and width of the line increase with

increasing duration of irradiation. Heating to 1000 C causes the ef-

fect to disappear. An analogous change occurs in the coloring of the

crystal. After prolonged neutron bombardment, the line width reaches

100 oersted at a temperature of 2900K; the width of the line is reduced

to one half when the temperature is decreased to 90 K.

b) Family of 12 weak anisotropic lines, symmetrically situated

relative to the central peak. The width of each of these lines is in-

dependent of the temperature and is approximately equal to 5 oersted.

In this case the effect does not decrease upon heating to 1000 0C. The

paramagnetic absorption spectrum can be described with the aid of a

spin Hamiltonian = gH S + DS- if one admits the existence of para-

magnetic centers with spin S = 1. It is necessary to assume here that

the axis of the crystalline field is parallel to one of the edges of

the tetrahedron made up of the carbon atoms. Thus, there exist six dif-

ferent orientations of paramagnetic centers, each of which has two ab-

sorption lines corresponding to the transitions -1 - 0 and 0 --+1. The

spin Hamiltonian constants have the following values: D = 0.010 cm-1

average value of the A factor = 2.0027 ± 0.0005 and 1 /gv = 1.00035 +

+ 0.00005.

The central isotropic line has apparently the following nature

[89]. Let us consider an isolated vacancy, formed in the crystal lat-

tice after the removal of one of the carbon atoms. Since diamond is

not an ionic crystal, there are no grounds for expecting the vacancy

to attract an electron or to contribute to its removal; it is more
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likely that the vacancy is to be regarded as an electrically neutral

stable formation. The vacancy is surrounded by four carbon atoms, in

each of which one of the two covalent bonds is saturated and therefore

each has an unpaired electron. It can be shown that one can apply to

this four-electron system Hund's rule, according to which all electron

spins are parallel to one another in the ground state, and consequently

the spin of the entire system is S = 2. In this state, the orbital

wave function is nondegenerate and consequently the paramagnetiLsm will

in first approximation be of pure spin nature.

The spin orbit coupling in the free carbon atom is very weak.

Furthermore, owing to the high symmetry of the crystalline field, the

spin level splitting due to the spin-orbit interaction becomes dif-

ferent from zero only in the fourth perturbation theory approximation.

We can therefore conclude that this splitting should be negligibly

small. An estimate shows that its order is l0-5 cm-1 . For the same

reason, the deviation of the g factor from its value for the free elec-

tron should also be very small.

It is more difficult to present a theoretical interpretation of

all the peculiarities of the anisotropic paramagnetic resonance spec-

trum. It is evidently connected with the carbon atoms which are situ-

ated in the interstices of the crystal lattice.

Let us proceed to an examination of paramagnetic resonance on

color centers produced in quartz after exposure to x-rays; these cen-

ters disappear upon heating to 3500C. Griffiths, Owen, and Ward (88]

first observed this effect in quartz and established that the paramag-

netic absorption is proportional to the optical absorption. Measure-

ments of the paramagnetic resonance spectrum were made at temperatures

of 90 and 20 0 K; at higher temperatures, the lines broadened strongly.

The existence of six types of paramagnetic centers was established,
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with different magnetic-axis orientations. A complicated hyperfine

structure of the lines was also observed, and could be resolved at

20°0K. The spectrum can be described with the aid of a spin Hamiltonian

with the following constants: S = 1/2, I = 5/2, gi, = 2.06 + 0.005,

g, = 2.00 + 0.005, A = 4.8.10-4 cm-1 , B = 5.6.l0"4 cm-1 , and P = -0.4 x

x 10 - 4 cm-1 . The symmetry axes of g tensors of paramagnetic centers of

different types are approximately parallel to the lines Joining the

pairs of silicon atoms within the crystal cell. The principal axes of

the g tensor and of the hyperfine structure tensor do not coincide.

The symmetry axes of the hyperfine structure tensor are parallel to

the Si-0 bonds.

*b6)

Fig. 6.5. Electronic structure
of paramagnetism carriers in
irradiated quartz.

The following interpretation can be offered for all these experi-

mental facts [82]. The various impurities contained in the quartz in-

clude also aluminum, the atoms of which replace a small part of the

silicon atoms. Before the quartz is irradiated, the aluminum atoms are

Al- ions, which have the same number of electrons as the silicon atoms.

Consequently, the crystal is not colored and there are no paramagnetic

centers. The negative charge of the Al- ions is neutralized by the

positive ions H+, Li+, and Na+, which are located in the interstices

of the crystal lattice. Irradiation with x-rays causes the atoms to be

ionized and uncompensated electron spins appear. Calculations made by

the electronic orbital method show (90] that the electron st:'ucture of

the paramagnetism carriers has essentially the form shown in Fig. 6.5a.

The nonzero spin belongs to the positive oxygen ion. Partially mixed
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in with this structure is another one (Fig. 6.5b), containing neutral

oxygen and aluminum atoms, and consequently, a hyperfine structure of

the paramagnetic resonance lines is produced.

Paramagnetic resonance in single crystals of quartz was observed

also by irradiation with fast neutrons [91, 92, 85a]. The observations

were made at room temperature. The effect is apparently not connected

with impurities and has an entirely different nature, as evidenced

even by the absence of a hyperfine structure for the absorption lines.

It is probable that the resonant absorption, as in the case of diamond,

is due to broken bonds which result from the occurrence of the vacan-

cies in the basic SiO4 tetrahedron. An analogous effect was observed

at 4.20K in silicon bombarded by neutrons [93]. In explaining the ef-

fect in irradiated quartz crystals it must be borne in mind that a

similar paramagnetic resonance spectrum occurs in silicate glasses

[92, 94].

Paramagnetic resonance was observed at temperatures 4-225°K in 'Y-

irradiated ice [95, 96]. The hyperfine structure of the line is con-

nected with the protons in ordinary ice and the deuterons in D2 0. The

nature of the paramagnetism carriers cannot be regarded as fully ex-

plained as yet.

§6.7. Metal-Ammonia Solutions. Paramagnetic Resonance on Polarons and
2Exc itons

Alkali and alkali-earth metals are readily dissolved in ammonia.

The solubility of sodium and potassium at the boiling temperature of

ammonia (-33.35 C) is approximately 5.4 and 4.9 mole per liter, re-

spectively; the solubility changes little with temperature. A distin-

guishing property of these solutions is their high electric conductiv-

ity, which approaches that of metals in order of magnitude. Measure-

ments of the dependence of the static magnetic susceptibility on the
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concentration of the solution have shown that at large concentrations

the addition of metal is not accompanied by an increase in the sus-

tceptibility.
The first measurements of paramagnetic resonance in metal-ammonia

solutions were made in the microwave band (97, 98, 99]. One exceed-

ingly narrow absorption line, with a width not larger than 0.2 oersted,

was established. Later experiments were made usually at lower frequen-

cies [100, 101, 9], which called for the application of a static mag-

netic field with intensity of only a few oersteds; it was necessary

besides to take account of the earth's field. The measurements were

carried out at temperatures from -80 to 200c. For potassium solutions,

the spectroscopic splitting factor is g = 2.0012 + 0.0002. For other

metals it deviates by less than 0.005. We see that the & factor is

close to (but noticeably smaller than) the S factor of the free elec-

tron. Table 6.5 lists data for the resonance line widths, showing that

the width decreases with increasing temperature and increases with in-

creasing concentration. In addition to metal-ammonia solutions, solu-

tions of lithium in methylamine [99, 9] and in ethylenediamine (99]

were investigated. Galkin et al. [102] observed paramagnetic resonance

in solutions of NaCl in ammonia after passing current through the solu-

tion. Apparently the current causes decomposition of the NaCl and thus

results in an ordinary solution of Na.

Blume [103] measured the times of longitudinal and transverse re-

laxation (T 1 and T2 ) at 17.4 megacycles by means of pulse techniques.

The time T2 was determined by measuring the time of fall-off of the

free induction signal, which was followed at 900 by a pulse (see §8.4).

It ranges from 3.2 to 0.7 microseconds when the sodium concentration

in NH3 increases from 0.03 to 0.75 mole/liter. The time T. was meas-

ured in solutions having concentrations from 0.24 to 0.5 mole/liter.
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TABLE 6.5

2 3 K.m..
40* 1 D OCT90 m"P

•
H. Te;ine taY- i USTpA- JtTpA

us. I P I.. l l yp'.
OPCDM 1AA

LI-NH, 0,1 ,--72 0,2 11Na-NH, 0,13 -75 0,1 1
K-NH, 0,1 -70 0,08

K-NH, 0,0 - 0,08 1
KNH: 0,027 20 I00 10K-NH, 0,08 20 0,43 1100]K10 l,o0o f~

Rb-NH, 0,16 -70 1 0,1 9
Cs-N H 0,4 I- 0 05 1 [9
Ca-NH, 0,14 -70 0,05 9J

LI-CH,NH, 1 0,6 I-70 I01 J9
LI-NH,CHNH, 1. 0,6 20 0, !

1) Substance; 2) width, oer-
sted; 3) temperature, oC; 4)
concentration, mole/liter; 5)
literature.

It was found that TI = T2 accurate to within 10%.

Kaplan and Kittel [1041 explained the experimental fact by means

of the Ogg model [105], which is based on the following assumptions:

1) the alkali metal atoms dissociate when dissolved; 2) the electrons

separated from the metal atoms are localized in the cavities formed in

the liquid, which have volumes equal to that of from 2 to 4 molecules

of NH3 ; 3) the wave function of the electron connected with the cavity

is a linear combination of hydrogen functions pertaining to the pro-

tons of the NH3 molecules located around the cavity; 4) the conduction

band lies one electron volt below the energy level of the bound state

of the electron; 5) some cavities contain one electron each (.e centers)

and some contain two electrons (e2 centers); the distribution of the

electrons among the e and e2 centers is determined by the equilibrium

conditions with respect to the reaction e + e e2 + 0.2 ev.

Between the e centers and F centers considered in §6.5 there is a

Sgreat similarity. Kaplan and Kittel therefore assume that the absorp-
tion line broadening has in both cases the same nature, namely the hy-
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perfine interaction between the localized electron and the spins of

the surrounding nuclei. An estimate of the width, made as in the case

of §6.5 by the method of molecular orbitals, yields Av0  7g9/A. How-

ever, there exists an essential difference, which we did not take into

consideration, between the e and F centers. The large mobility of the

liquid is capable of appreciably decreasing the width of the resonance

line. The correlation time (see §5.6) can be estimated with the aid of

the Debye expression for the rotational dipole relaxation:

31V (6.43)

where V is the volume of the molecule. Hence T0  i0-1 see. We see

that the correlation time is much smaller than the transverse relaxa-

tion time ~l/Av0 and therefore the motion of the molecules should nar-

row down the resonance line appreciably. The width obtained as a re-

sult can be estimated by the formula 6v - (Av)2 , from which it fol-

lows in our case that AH - 0.01 oersted. So good an agreement with the

experimental data is accidental, bearing in mind the crudeness of the

theoretical estimate.

At large solution concentrations one can expect the dipole-dipole

interactions between different localized electrons to start playing a

role. The influence of dipole-dipole interactions on the resonance

width can be estimated by means of Formula (5.14). Numerical calcula-

tion shows that this broadening mechanism can become significant at

concentrations exceeding 0.1 mole/liter.

We know that if Tc < < 1/AV0 , we have T2 = T1 , which, as we have

seen, has been confirmed by direct measurements. We note that both

mechanisms which we have considered for the broadening lead to a pro-

portionality between the line width and the coefficient of viscosity.

Experiment confirms this theoretical conclusion, too.

-353 -



The Ogg e-center model, on which the theory of paramagnetic reso-

nance line broadening considered here is based, was seriously crit-

icized by Deygen [106], who developed a theory of optical, magnetic,

and other properties of metal-ammonia solutions by assuming that upon

dissociation of the metal atoms in the ammonia the electrons go over

into the polaron state. According to Deygen, it is the polarons and

not the local electron centers that cause the remarkable features of

solutions of metals in ammonia. Deygen and Pekar [107] have shown that,

in first approximation, the hyperfine interaction does not change the

polaron energy and consequently it cannot cause broadening of the

paramagnetic absorption line. The exceeding narrowness of the reso-

nance lines in metal-ammonia solutions was regarded as a direct proof

of the existence of polarons in these substances.

Deygen and Pekar considered also the possibility of producing ex-

citon concentrations high enough to permit observation of paramagnetic

resonance absorption of energy from a radiofrequency field by excitons.

The stationary exciton concentration N can obviously be determined

from the following formula

S(6.44)

where T is the exciton lifetime, n the flux of light energy per square

centimeter per second, x the coefficient of exciton absorption of

light in the crystal, and v the frequency of absorbed light. If we as-

sume T 10 - 8 sec, hv = 1 ev, K = 10 5 cm-1 , II = w/cm2 , then we ob-

tain N 1016 cm- 3 . Thus, observation of paramagnetic resonance with

the aid of modern technological means is fully feasible. In order to

reduce the nonradiative deexcitation of the excitons, it is desirable

to choose crystals free of impurities and to use low temperatures. It

must be borne in mind that, as in the case of polarons, there will be
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no broadening of paramagnetic resonance line due to hyperfine interac-

tion between the exciton and the spins of the surrounding nuclei.
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Manu-
script (Footnotes]
Page

*No.

311 Levy (9], investigating the temperature dependence of the
resonance line width of lithium, established the presence of
a jump at approximately 800K, this being apparently con-
nected with the existence of a phase transition.

323 Gadolinium, the ions of which also have an odd number of
electrons, will be considered separately.

326 A natural sample of silicon contains 4.68% of the isotope
Si 2 9 .

327 Recently, investigations of paramagnetic resonance in ger-
maniumhave yielded positive results (110].
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Chapter 7

FREE RADICALS

§7.1. Introduction. Hyperfine Structure of Paramagnetic Resonance
Lines in Solutions of Free Radicals

The study of free radicals, i.e., molecules in which at least one

electron has uncompensated spin, is one of the most important fields

of application of paramagnetic resonance and attracts at present a

very large number of investigators. It is sufficient to state that the

total number of papers devoted to this problem already amount to sev-

eral hundreds. We are therefore unable to give in our book an exhaust-

ive exposition of all the results obtained. We refer the reader for

details primarily to Ingram's book [1], and also to the reviews by

Wertz (2] and by Blyumenfeld and Voyevodskiy [3].

The variety of substances that have to be considered in the pres-

ent chapter is so great that their rigorous classification is very

difficult.

Paramagnetic resonance in free radicals was first observed in 1947

by Kozyrev and Salikhov [4] with pentaphenylcyclopentadienyl C35 H25 as

an example. Solid C3 5H25 disclosed a single line with a Z factor which,

within the limits of the low measurement accuracy, differed little from

two. It was therefore concluded that this free radical has essentially

a spin magnetism, in accordance with the measurements of the static

magnetic susceptibility of this substance.

In 1949, a systematic study of the paramagnetic spectra in free

.• radicalwas initiated. By now numerous classes of these substances have
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been investigated, for example organic derivatives of divalent nitro-

gen, radical ions of hydrocarbons, heptaquinones, compounds of the

peroxide type, biradicals, etc.

An essential feature of paramagnetic resonance spectra in free

radicals is the fact that the S factor is very close to its value for

the free electron gspin = 2.0023, i.e., pure spin magnetism. Thus, for

ordinary organic free radicals containing only C, H, 0, and N atoms,

the difference g - gspin = Ag does not exceed 0.002-0.003. This prac-

tically complete lack of orbital magnetism is due to the fact that the

molecules of the free radical have low symmetry, and consequently the

orbital degeneracy is completely lifted; there is no doubt that in many

of these cases the lowering of the symmetry is brought about by the

Jahn-Teller effect. In connection with so strong a suppression of the

orbit, the spin-orbit coupling in free radicals is small and the spin-

lattice relaxation time is long (usually on the order of l0-7 sec).

A second feature characterizing practically all free radicals

which in the condensed phase are in pure undiluted state is the exceed-

ing naturalness of the paramagnetic resonance lines: their width as a

rule is of the order of one or several oersted. This value is approxi-

mately 100 times smaller than that calculated from magnetic dipole in-

teractions without account of exchange. Thus, in free radicals we have

an example of a system with tremendous exchange forces. Accordingly,

the absorption line shape in these radicals is close to Lorentzian,

and the line width is determined by the spin lattice interactions [5].

It must be noted that in addition to exchange in free radicals,

there exists still another important mechanism whereby the paramagnetic

resonance lines become narrower; this mechanism was considered in [6].

fIt consists in a reduction in the effectiveness of the local magnetic
fields, due to the motion of the strongly delocalized unpaired electron
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within the molecule of the free radical. There are certain experimen-

tal confirmations of the reality of this mechanism.

TThe narrowness of the lines makes the height of the resonance

peaks in free radicals very large, thus facilitating their detection.

Thus, for the substance extensively used as the standard calibrating sub-

stance in research on paramagnetic resonance, ca-diphenyl-p-picrylhy-

drazyl (DPPH) this line can be observed with modern apparatus in the

presence of only 10-13 mole of DPPH in the sample. Paramagnetic reso-

nance is therefore the best of the existing methods for detecting free

radicals (at least in condensed phases).

The significance of paramagnetic resonance to chemistry is not

limited to this. An investigation of the spectra of paramagnetic reso-

nance in solutions containing free radicals yields very valuable in-

formation with respect to the nature and properties of the latter.

This information is obtained primarily by studying the hyperfine struc-

ture of paramagnetic resonance spectra. A well resolved hyperfine

structure is observed only at sufficiently low concentration N of the

free radical in the solution (usually with N < lO 3 mole/liter), when

the exchange interactions between the molecules of the free radicals

turn out to be practically completely eliminated. In this case the num-

ber of hyperfine line components is frequently very large and their

relative intensities vary. The occurrence of such a structure is ex-

plained by the considerable delocalization of the unpaired electron in-

teracting with the summary spin Isumm of the several atomic nuclei con-

tained in the molecule. Therefore an analysis of the observed hyperfine

structure leads to conclusions both concerning the nature of the rad-

ical itself and concerning the character of the delocalization of the

molecular orbit of the unpaired electron. We shall illustrate this us-

ing the simplest example of ac-diphenyl-a-picrylhydrazyl, the structure
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of which is given by the formula

C) - NO,
N-NO

The spectrum observed in dilute solutions of this radical consists

of five lines with intensity ratio 1:2:3:2:1. It can be explained by

assuming that the density of the unpaired electron

cloud is equally distributed between the two cen-

tral nitrogen atoms. Inasmuch as the spin of the

bV 14 N nucleus is equal to one, we must have 21Bumm +

Fig. 7.1. Dia- + 1 = 5 hyperfine components. The ratio of the in-
gram of the hy-
perfine split- tensities of the individual components follows di-
tings produced:
a) by the first rectly from an examination of Fig. 7.1, whichato of14N n
atom of 1N and shows first the hyperfine splittings of the ground
b) by the sec- 1

ond atom of 14 N, level, due to the first 14N nucleus, and then the
for A1 = A2. splittings of equal magnitude, due to the second

nucleus of 14N, superimposed on the former splittings.

A solution containing the negative p-benzoheptaquinone ion also

displays five peaks, but with intensity ratio 1:4:6:4:1. Simple argu-

ments analogous to the preceding ones show that in this case there are

identical interactions between the electron spin and all four protons

of the molecule, i.e., that the unpaired electron density is distrib-

uted over the entire ring (we recall that the spin of the nuclei 12C

16and 0 is equal to zero, and consequently these nuclei do not influ-

ence the hyperfine structure).

I

0'
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If the electron does not interact to the same degree with all the

nuclear spins, the picture of the spectrum becomes more complicated.

In particular, if the constant of hyperfine interaction with one group

of nuclei, having a summary spin I1, turns out to be much larger than

the constant of interaction with another group with summary spin 12,9

then each hyperfine structure peak resulting from the stronger interac-

tions and consisting of (2II + 1) components breaks up into (212 + I)

close-situated peaks due to the weaker interaction. Finally, in the

case when the constants for the interaction between the electron spin

and each of the atomic nuclei a, b, c, ... of the molecule, enclosed

by the delocalized orbit, turn out to be different and their ratios to

one another are not whole numbers, we should have a spectrum consist-

ing of (21 + 1)(2 1 b + 1)(21c + 1)... components.

We note that, strictly speaking, direct conclusions concerning

the distribution of electron density can be drawn from data on para-

magnetic resonance only if the atoms enclosed in the delocalized orbits

are completely equivalent (as is the case, for example, in heptaqui-

none). For atoms that are not chemically equivalent (as are the nitro-

gen atoms in DPPH), such a treatment is only very approximate [3].

Let us proceed now to discuss the causes of the very possibility

of occurrence of a hyperfine structure in paramagnetic resonance spec-

tra of aromatic free radicals, such as, for example, the negative ions

of aromatic hydrocarbons.

In order for hyperfine splitting different from zero to exist it

is necessary that the electron density on the nuclei also be finite.

Therefore, a direct interaction between an unpaired 7r-electron of an

aromatic free radical with ring protons is impossible, for the latter

are located in the plane of the ring, where the density of the 7r-elec-

tron cloud is equal to zero. Thus, it appears at first glance that the

- 365 -



hyperfine structure in paramagnetic resonance spectra of aromatic free

radicals should be generally nonexistent. Yet experience shows the op-

Tposite to be true.
An attempt to explain the observed effect with the aid of an anal-

ysis of the proton vibrations normal to the plane of the ring has not

led to any success. It was therefore assumed (in analogy with the as-

sumption of the theory of hyperfine structure in ionic crystals, con-

sidered in Chapter 3), that the unpaired electron of the aromatic rad-

icals actually has a small admixture of the excited a state. A quanti-

tative calculation of the configuration interaction for aromatic rad-

icals was made by Weissman [7], McConnell [8], and others [9], [10].

According to [7], the ground state of the free aromatic radical
is described as follows: (filled orbits) c2r, where GB is the molecular

orbital binding C and H. A possible excited state that mixes with the

ground state is: (filled orbits) 1~7r(GA) l, where A is the disintegrat-

ing orbit. Since one of the conditions of the configuration interac-

tion is the requirement that both interacting states have the same sym-

metry with respect to reflection in the plane of the ring, an admix-

ture of the state: (filled orbits) Gl7 2 is impossible.

It follows from theory that the hyperfine splitting A', expressed

in oersted, produced by the proton bound with the given carbon atom,

is directly proportional to the density P. of the unpaired electron
cloud on the nucleus:

A' = @i" (7.1)
Here Q is a constant which is the same for all the aromatic free rad-

icals, caleulated to be approximately 28 oersted. This quantity is the

distance between the peaks of the hyperfine structure under the condi-

tion that pi = 1, i.e., that the density of the electron cloud is en-

tirely connected with a single C atom; on the other hand, if the den-
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sity per one atom is < unity, then the constant A' should be accordingly

smaller. Therefore, if the unpaired electron is delocalized over the

Tentire ring, then the distance between the extreme peaks of the hyper-
fine structure should again be close to 28 oersted.

For the majority of the investigated aromatic free radicals, ex-

perience has yielded quite good agreement with theory (see Table 7.3).

In some cases, however, for example in perinaphthene, the total hyper-

fine splitting turns out to be appreciably larger than 28 oersted. This

was attributed to the possibility of "negative spin density" on certain

carbon atoms. The "negative spin density" is the result of the perturb-

ing action of the unpaired electron on the orbit of the paired elec-

trons. This perturbation leads to a partial decompensation of the in-

itially paired spins and thus again gives rise to a new unpaired elec-

tron density with a spin direction opposite that prevailing on the per-

turbing electron. The new density has therefore a negative sign. The

initial, positive density in turn increases further, so that the alge-

braic sum of the densities on all the atoms of the ring remains equal

to unity as before. For the hyperfine interactions, however, the sign

of the spin density is immaterial, and therefore the total hyperfine

splitting, which is proportional to the sum of the absolute values of

the spin densities, should become larger than 28 oersted as a result

of the perturbation [11].

The theory of configuration interaction does not explain, however,

the hyperfine splittings that arise as the result of the protons in

the groups that replace the ring hydrogen atoms, such as the CH3, which

replace the hydrogens of the ring in tetramethylbenzoheptaquinone
6

- CHI
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The mechanism that ensures the hyperfine interaction with the

protons of the substitutes consists of direct overlap of the 2 pz orbit

of the carbon atom of the ring with a linear combination of the orbits

of the two protons of the methyl group. To the extent that the pz orbit

is a part of a system containing an unpaired electron, it becomes pos-

sible for spin density on the methyl group to appear. On the other

hand, rotation of the methyl group relative to the ring causes the

overlap of the electron clouds to become possible for all three hydro-

gen atoms of CH This mechanism, due to the superconjugation phen-

omenon, is discussed in greater detail in [48, 49).

In the paramagnetic resonance spectra with which we dealt up to

now and which are observed in liquid systems with low viscosity, con-

taining free radicals, only the isotropic part of the hyperfine inter-

actions plays an important role; the anisotropic part of these inter-

actions is effectively averaged by the Brownian movement. In reference

[12], which is devoted to paramagnetic resonance in the inorganic free

radical CIO2 (chlorine dioxide), it is shown that whereas in dilute

liquid solutions of this radical one observes four hyperfine structure

peaks (from 35,37C, with I = 3/2) with distance A' = 17 oersted between

peaks and with each peak AH = 8 oersted wide, after freezing the solu-

tions A' becomes equal to 52 oersted with a corresponding increase in

AH. The increase in both AH and in A' are due to the fact that freez-

ing removes the averaging action of the motion.

An analogous result was obtained by Berthet [13), who investigated

the hyperfine structure of the free radical (CH3 OC6H4)2NO in solid and

liquid solutions. Whereas in the liquid solution we have for the con-

stant A' = 11 oersted and the intensities of all three peaks (from the

4N nucleus) are equal to one another, in solid solution we have A' -

= 18 oersted and the components have different intensities. Worthy of
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notice is also the fact that the observed hyperfine structure appears

in the solid solution at a 25% concentration of the free radical,

Iwhereas in liquid solutions it is observed only at 0.3% concentration.
This difference may be evidence of the fact that in liquid solutions

the free radicals are contained in the form of individual molecules

only under appreciable dilutions.

§7.2. Free Radicals in the Pure State

Before we present the results obtained for different classes of

pure free radicals, it is advantageous to dwell on the most investi-

gated among these substances, aa-diphenyl-1-picrylhydrazyl, DPPH, as

being one of the chemically most stable free radicals, widely used for

an estimate of the sensitivity of magnetic spectroscopes, for an es-

timate of the number of paramagnetic centers in the investigated spec-

imens, and finally, in some cases to determine the - factors.

Resonance in solid DPPH was first measured in 1950 [14]; the.&

factor in polycrystalline specimens was found to be 2.0036 + 0.0003;

the line width is AH = 2.7 oersted. Later on it was observed in single

crystals of DPPH that a slight anisotropy exists both in the values of

and in the values of AH (15, 77]. The saturation method was used to

measure the longitudinal relaxation time TI, which was found to be

6.3-10 -8 sec, which is close in magnitude to T2, as should be the case

for systems with strong exchange [5] (see §5.3). The theory of DPPH

absorption lines in weak fields was developed in (16] and later on con-

firmed experimentally [17].

A characteristic,long-unexplained feature in paramagnetic reso-

nance of solid DPPH was the great difference in the values of AH (from

about 1 to about 7 oersted), obtained by different researchers.

The main reason for these discrepancies was explained in a paper

by Arbuzov, Valitova, Garif'yanov, and Kozyrev [18], who investigated
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TABLE 7.1 the influence exerted on AH by the solvent*
Width of Paramagnetic from which the DPPH is crystallized. The

* Resonance Lines in
DPPH Specimens Ob-
tained with Different results of their measurements, made in fine
Solvents crystalline powders in vacuum are listed in

i ,_ Table 7.1.
PacTropHTeub V - 300 M - 94MM I It is seen from the table that the

M' K1 90"K 29WK

4 BeH3oaI 8 4,6 4,7 nature of the solvent greatly influences the
5Tonyoa 2,9 2,6 2,6
0 Kcn',"o(cmecb) 2,5 2,2 2,3 line width; this is expected, incidentally,
flpHAI 5,3 5,0 5,0
Bpo4oqp. 2,2 2,5 2,5

9qewpexxop.- since it has already been known that some
CTWO YrJICPOA 1,9 2,7 2,3

lOX.Ipo(Popm- 1.7 2,1 2.0
llCepoyrepoA 1,3 1,3 1,5 solvents enter into the crystalline lattice

1) Solvent; 2) oe; 3) of DPPH (it is not without interest to note

Mcs; 4) benzene; 5) here that the chemical analyses show that
toluol; 6) xylol (mix-
ture); 7) pyridine; 8) in no case is there a guarantee that the
bromoform; 9) carbon
tetrachloride; 10) solvent enters into the lattice in stoichio-
chloroform; 11) carbon
disulfide. metric proportions).

The investigated specimens of DPPH are divided into two groups:

in the first (cyclic solvents) the lines narrow down upon cooling and

upon increase in the frequency; in the second (noncyclic solvents),

both relations are reversed. A slight narrowing down with increasing

frequency, observed in the first group, agrees qualitatively with the

theory of Kubo and Tomita for pure isotropic exchange (see Chapter 5)

and is probably the result of the vanishing of the nonsecular line

broadening in strong fields H0 . The narrowing down upon cooling can be

explained as being the result of the dependence of the nonsecular

broadening on the correlation time.

However, the dependence of the line narrowing in DPPH of the sec-

ond group on the frequency cannot be explained simply. One could as-

( " sume this dependence to be the consequence of the large anisotropy of

the j factor in the second group, but measurements made by Yablokov
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(20] in single crystals of DPPH have shown that this anisotropy is ap-

proximately the same for a benzene specimen (%| = 2.0031 + 0.0003;

g, = 2.0039 + 0.0003) and for a chloroform specimen (g,, = 2.0030 +

+ 0.0002; gI = 2.0040 + 0.0002). Thus, there is still no complete ex-

planation of the line width in modifications of DPPH.

The nature of the solvent is not the only factor that influences

AH in DPPH. As was established in [21, 18], a reversible line broaden-

ing, due to the adsorption of 02 molecules from air, was observed in

fine crystalline specimens pertaining to the second group. Pumping out

the air narrows the line down to the value of AH corresponding approx-

imately to the coarse crystalline specimen. This effect is analogous

to one previously observed on carbons [22] and is due to shortening of

the spin-lattice relaxation time in DPPH under the influence of the

magnetic moments of the 02 molecules. Indeed, it has been shown by the

saturation method that along with broadening the lines, adsorption of

oxygen causes also a shortening of T1. The 02 causes a particularly

strong broadening of the narrowest line obtained in specimens that

crystallize out of carbon bisulfide (18]. For specimens crystallized

out of chloroform, the influence of oxygen is much greater at tempera-

tures 90-273°K than at temperatures above 2730 [21].

It follows from all the foregoing that if DPPH is used as a

standard, it is necessary to indicate the method by which it has been

obtained, to know the chemical composition of the specimens, and to

use specimens that have been isolated from the action of oxygen. Appa-

rently the most suitable standard is DPPH crystallized out of benzene,

where the adsorption of oxygen has a negligible influence.

It is necessary to take account of the fact that the dependence

r of AH on the fine points of its production technique and on the medium

from which the specimen is crystallized is not confined to DPPH, but
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TABLE 7.2

1PaAoicIA 9 611. .7pem Jturepa-

2 T~

4 Bdllaoxm~in if, atcop6. Ila 2,3 cK.hO 8

S I(PCII1.'1C I ITp I I (P~C lIf13TIMJ 2,00 5 30
IByPCTCPa ro.ay6oft (hlcpeXBopaT) 2,003 2,7 '321BYPCTCpa roiiy6ofl (mwIIpa?) 2,0033 6 f3

HIIAt) 2,0028 2,7 11
9 qtlllap3,1f11f311-1a3OTa oKIicb (mo-g1=2,0095; 4

Holcp.) gj= 2,00.35

1.0 ll InapaKcCLII.I.NCrH.1 2,00 IIeCIO. IbK 132

~ ~IT 2,0036 1331
Kcnbojia - Bamiiu'ia P1aHMIa 2,0057 8,9 (32, 331
2-ihiTPOpeahC1,1ITP0o)Cna3iHa XJo-

pOCT11hI1I(IT 2,0032 13..
15 rl C HTa(PC 1h1.1 UIK.1 onIICIra~utI Ilan ,0025 [4, 23

16 ilOpfPIlpOKCuzA 2,0065 17,0 [M
17 rlopoomp~nlw 2Z0057 10,7 [31,

18 TerpamIeT~f.6dnarfiula (PopAIIIaT 2,00 3,4 35

S TeTpa.%CTIsuCrii6omiflnepoxciix:-
MA111 ;hIcIClbPOlar 2,00 100 [32121 Tintroxuuiimpoii, ancap6. fl

S Ba (01-),. - SHO [28
2 Tpit-p-iccemiam~eTIMi 2,0031 5,7 [21'

2 Tp~-TC~p-6y~mPeIIOC~fJI2,0052 7, 23
Tpit-p-ahmm1.ammuiia ncpxnopar 0,68 16
Tpni-p-aitiiopciiu.ia.%niiua flop-

S xaiopaT 0,33 [361
Tpfl-p.IIIITpo emmI~MeTHA 2,0037 0:7 132j
etimnpaxiim i~Off, anIcap6. "a
Ba (01I),8, 281

29 N11cflN9)camINoca 2,0036 [371
30 4*crnu (N-qciii,.ionoro 30npa

oxc i! %Ia-2- 1.1 110 .ii aiilOH-4-
un.a 2) nnITpOKIcdn. (NIIooKp~tCTr.) g,, 2,0042

gy=9 0064 1341
g99 "0083

31 Xpomonech Cr(C 0Hf,.[ 1,975 33 1581
b Cr (CH,-.C1,H,)I 1,987 28 1

1Cr (COI-h5-C81H13XOCal-1 1,993 263 [.

1) Radical; 2) oe; 3) literature; 4) benzoquinhydrone adsorbed on
Ba(OH)2 ' 8H20; 5) biphenylentriphenylethyl; 6) Wurster's blue (per-

chlorate); 7) Wurster's blue (picrate); 8) (ferricyanide); 9) nitrogen
diparaanisyl oxide (monocrystalline); 10) diparaxenylmethyl; 11) di-
phenylenetriphenylmethyl; 12) diphenyiquinooxaline chiorostannite; 13)
Kenyon-Banfie id radical; 14) 2-nitrophenanthrophenazine chioros tannite;
15) pentaphenylcyclopentadienyl; 16) porphyroxide; 17) porphyrindine;
18) tetraxnethylbenzidine formiate; 19) tetraniethylbenzidine perchiorate;
20) tetramethylstiboniumperoxylamifle disulfonate; 21) thyme quinhydrone,
adsorbed on Ba(OH )2' 8H2 0; 22) tri-p-xenylmethyl; 23) tri-tetr. buty).-

phenoxyl; 24) triphenylamine perchiorate; 25) tri-p-anisylamine per-
chlorate; 26) tri-p-aminophenylamine perchiorate; 27) tri-p-nitrophenyl-
methyl; 28) phenantraquinhydrofle adsorbed on Ba(OH) 2 8H2 0 ; 29) N-phernyl-

N-9-decalyl-N-oxoaminyl; 30) phenyl (N-phenyl ether oxime-2-methyl~pent-
anone-4 or 2) nitroxide (monocryst.); 31) chromocene.
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may occur also in many other radicals. Thus, for pentaphenylcyclopenta-

dienyl, a value of AH amounting to several times ten oersteds was ob-

tained in [4], 0.62 oersted was obtained in [23], and from 5 oersted

upward was obtained in [24] (depending on the solvent).

Unfortunately, in most work on DPPH and its derivatives it is not

indicated from which solvent the radical was crystallized.

In addition to DPPH, several polycrystalline free radicals of Siln-

ilar structure were investigated [25]; these were of the type

0 /NO2

N- N-(j-Noz, where X is C1

(g = 2.0042; 6H = 1.2 oe); Br (g = 2.002; 6H = 2.2 oe); OCH3 (g = 2.000;

6H = 2.6 oe); F (g = 2.000; 6H = 4.1 oe). Here 6H is the line width at

the points of inflection. Also investigated was diphenyloxypicrylhy-

drazyl powder, with the same value of g as in DPPH and 6H = 3 oersted

[26] and single crystals of N-picryl-9-aminocarbazyl, with g 2.0041-

2.0024; 6H = 0.5 oersted [27, 28]. The last substance differs very lit-

tle from DPPH, having a structural formula

N - -- Not.

c) / I* NO,

Nonetheless, its line width is considerably smaller than in any mod-

ification of DPPH.

Certain results of measurements of paramagnetic resonance in solid

organic free radicals of other types are listed in Table 7.2. They do

not claim to be exhaustively complete.

§7.3. Free Radicals in Solutions

In §7.1 we pointed out that from the chemical point of view the

most interesting is an investigation of the paramagnetic resonance line
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hyperfine structure observed at sufficiently low free radical concen-

trations in solutions. We give here some results obtained in a study

of solutions of free radicals.

We have seen that DPPH in solution yields five lines. N-picryl-9-

aminocarbazyl, which is very close to it, yields seven lines, corres-

ponding to a ratio of 2 between the constants A'1 and A'2 of interac-

tion with the nuclei of the first and second atoms of the nitrogen.

The maximum possible number of lines, namely nine, could be obtained

in solutions of diphenyldinitrosulfophenylhydrazyl salt

cY NOZ

where the constant of interaction with the first nitrogen atom is A1 =

= 12 oersted, while A2 = 8 oersted (38, 39]. We see from this example

how sensitive the hyperfine structure is to the least changes in the

distribution of the electron densities in the molecule.

In order to verify the hyperfine structure theory, great interest

attaches to solutions containing ions of aromatic hydrocarbons. One of

the first to be investigated [40] was the negative naphthalene ion

which is obtained when alkali metals act on solutions of naphthalene

in tetrahydrofurane or dimethyoxyethane. The nature of the metal and sol-

vent does not change the spectrum, which consists of 17 lines with in-

tensities 1:1:1:2:2:1:2:2:1:2:2:1:2:2:1:1:1 and with a distance of

27.2 oersted between the outermost peaks ("total splitting"). This

quantity is in very good agreement with the theoretical value of the

total splitting (28 oersted). The number and intensity of the lines
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were explained on the basis of an approximate calculation of the molec-

ular orbitals, made as long ago as in 1931 by Htckel [411. If the con-

stants A and A of the hyperfine structure due to the a and p protons

of the naphthalene ion are equal, we should have nine lines; if A

A five groups of lines should be obtained, each containing five

nearby-lying components. The number 17, on the other hand, corresponds

to a ratio Aa/Ap = pia/pip = 3:1, which is obtained indeed from calcu-

lations made following Hdckel. The most exact value of the ratio A a :AP,

obtained from a detailed analysis of the paramagnetic resonance spec-

trum, is 5.01:1.79.

Partial replacement of 12C by 13C has made it possible to obtain

for the naphthalene ion the constant of the hyperfine structure due to

the interaction betw,.en the electron spin and the spin of the 13C nu-

cleus (I = 1/2). It turned out to be equal to 7.1 oersted, from which

the density of the electron cloud on the C nucleus was calculated. Sev-

eral other negative aromatic ions were investigated in similar fashion

(see Table 7.3), and the electron densities on the protons were calcu-

lated and found likewise to be in good agreement with the calculations

based on [41]. In addition, experiments on paramagrnetic resonance have

made it possible to establish an electronegativity scale for the aro-

matic ions, and if it is assumed that the lifetime of the electron on

the ion determines the line width, one can also determine the speed of

electron transition between the aromatic molecule and the ion [42].

By treating aromatic hydrocarbons with concentrated H2 S04, it is

possible to obtain positive ions of these hydrocarbons which are also,

naturally, free radicals. Several such radicals were investigated by

the paramagnetic resonance method [43, 44].

3 Treatment of several organic substances of other classes with sul-

furic acid (for example, anthraquinone thiophene, and many others),
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also leads to the occurrence of paramagnetic resonance spectra [45, 46].

In these cases, however, one obtains not positive ions with the charac-

ter of radicals, but radical oxidation products of the corresponding

organic substances, as was convincingly shown in [47].

A large group of investigations was devoted to solutions contain-

ing various heptaquinones and their derivatives. The experimental val-

ues of the hyperfine structure constants were compared with those cal-

culated on the basis of the superconjugation theory, developed in [48,

10] and gave good agreement [49].

The picture of the spectrum is frequently very complicated. Thus,

for monomethyl-n-benzoheptaquinone it becomes necessary to assume that

the hyperfine structure constant for the two ring protons is A'l

= A'2 = 2.48 oersted, while that for the third ring proton is A' 3

= 1.73 oersted, and for the methyl protons the same constant is B' =

= 2.02 oersted [50]. The spectrum becomes simpler if the substituents

are chlorine atoms, inasmuch as the hyperfine splitting due to these

atoms is small and does not produce resolved lines, since it partici-

pates only in the width of the components. Thus, in trichlorobenzohep-

taquinone one observes only two components, due to the single ring pro-

ton [51]. On the contrary, fluorine- substituted heptaquinones dis-

close a hyperfine structure due both to the protons and to the 19F nu-

clei, owing to the large magnetic moment and the small spin (I = 1/2)

of the latter [1].

From among the numerous free radicals of other classes, investi-

gated in solution, we shall discuss only a few and refer the reader

for more details to Ingram's book [1]. Thus, we point out that the

spectra in solutions of triphenylmethyl [52] and a few other radicals

P disclose anomalously large hyperfine splittings. Triphenylmethyl
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W ;60;
Y

should yield, assuming that the corresponding H atoms in all three

rings are equivalent, a total of (2I + 1)(211 + 1)(21 + 1) = 196

lines. These are not fully resolved, and the total splitting is 25 oer-

sted. But an investigation of a specimen containing 13C in the methyl

position has shown the occurrence of a doublet due to the 13C nucleus

with a splitting of 22 oersted, which indicates that a considerable

fraction of the density of the unpaired electron is concentrated pre-

cisely on the methyl carbon, and consequently, Zpi on the remaining

atoms should be considerably less than unity. An explanation of the

spectrum of triphenylmethyl, which we shall not discuss, was given in

[53. 54].

In the radicals considered so far, both in solid form and in so-

lutions, the g factor is very close to 2.0023. More significant devia-

tions from this value are observed in solutions of radicals containing

sulfur, and also in radicals of the peroxide type [55]. This indicates

a much stronger localization of the unpaired electron in the latter

cases. Radicals containing sulfur were obtained by dissolving thio-

phenol, thiocresol, thionaphthol, and diphenyldisulfide in concentrated

sulfuric acid [45, 46]. All give a paramagnetic resonance spectrum con-

sisting of two groups of lines with g, = 2.0151 and g2 = 2.0081 (the

values of & are determined for the centers of the groups). These groups

are due to two different radicals, since the second group turned out

to be more stable in time, and remains when the first vanishes com-

p pletely. A group of five lines with g = 2.0081 is produced by the thi-

atrene ring with four protons. The group with g = 2.0151 apparently is
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due to the (C6H5S)H+ radical with appreciable localization of the un-

paired electron on the sulfur atom.

We note that along with organic sulfur derivatives with radical-

like character, paramagnetic resonance was observed also in pure molten

sulfur [56, 57]. It is observed at temperatures from 189 to 4140C. One

line was noted (the spin of the 32S nucleus is zero), with a near-

Lorentzian shape and g = 2.024. Neither the line width nor E depend on

the temperature. This resonance is due to a partial breaking of the

bonds of the ring molecules S6 . A solution of sulfur in fuming sulfuric

acid [1] also discloses two lines (at 20% S03) with S factors that

fluctuate between 2.003 and 2.018 for one line and between 2.025 and

2.032 for the other. The latter is apparently due to the broken S6

rings, and the former to some other radical containing sulfur.

Great interest is attached to an investigation, made by Voyevod-

skiy and his coworkers [58, 59], of solutions containing chromo-aromatic

compounds of "sandwich" structure. Compounds of this type (metallo-

cenes) have a structure (C6H6 )2Me or (C5H5 )2Me, etc., where the metal-

lic atom is situated between two parallel ring structures. The nature

of the covalent bond of the metal with the addend in these compounds

cannot be described within the framework of the theory of ordinary two-

electron bonds. Quantum mechanical calculations on compounds of this

type are developed in [60].

An investigation [58, 59] of paramagnetic resonance spectra in

chromocene cations of the type

CHx ][Cr
where X = H, C6H6 , cyclo-C6H1 1 , COOH, etc., have shown the presence of

S a hyperfine structure in which the number of components corresponds to

the number of protons on the two rings; on the other hand, a binomial
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distribution of the component intensities has led to the conclusion

that all these protons are equivalent. The summary spin density on

both rings amounts to 1.92. It follows from this that 0.92 of the den-

sity of the unpaired electron with opposite spin orientation is local-

ized on the chromium atom.

It was shown in [61] that the width of the paramagnetic resonance

spectrum components in chromocenes depends strongly not only on the

substitutes, but also on the nature of the solvent and on the tempera-

ture.

In addition to the stable radicals, one can sometimes detect in

liquid solutions radicals that are formed during the course of the re-

actions. Thus, for example, in [62] there was investigated the para-

magnetic resonance of pyrogallol, which oxidizes in air, in aqueous

and alcohol solutions. At room temperatures, the lifetime of the free

radical turned out to be on the order of several minutes; g = 2.005;

the spectrum consists of two triplets. In most cases, however, in solu-

tions with low viscosity, the unstable radicals have so short a life-

time that their dynamic concentration lies on the borderline of the

sensitivity of modern apparatus. Furthermore, the short lifetime

causes broadening of the absorption lines, which makes their detection

even more difficult. Unstable radicals are therefore investigated usu-

ally by rapidly freezing the solutions.

To conclude this section, we present Table 7.3, taken from [1].

It illustrates the experimental results obtained in the investigation

of several types of stable free radicals in solutions.

§7.4. Irradiated Organic Substances. Radicals in Polymers and Carbons.
Biradicals and Triplet States. Biological Objects

1. Irradiation of organic substances with ultraviolet, x-rays,

and -rays frequently damages their molecular structure and leads to the
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TABLE 7.3
Stable Free Radicals in Solutions [1)

ue~Iay ~paft HC 44AO KOMIIO-

1 PAAHKAA I )A P l IkaI itc ... T CT 4fU P3TYP&

5A) ApoITIMI'recxl1b
0 aiipaueu 26 2163
S6eH30ona 22,5 7 61

QIfl.AuHIIIITpo6cii3oaa 25 8 6

Aq(~i.I 21 9 6

11 Ha4M~.uniia c IS( 34,3 34 ~ 67~
12 IafbTaai~a c D 29 15-16 [6 J, 63)

JIP6I3U25 10 66
nhe"4ITpo6CIA49 7X4 68
HeCH~alH 24 9 44

T Iepatteia 25 31 44
TeHIpU 130a 25 8 - 66
TpHCCIIHIIpoIeHoa

19 ) p-6ISCI3OcemuHHIoH 9,48 5 69
~U MoIIoMNCTHA'-p-6cH3CCIiXii.HOH 14 smoro muniHt 70
21 TepamcTIM 31 23 13 70

MOuIAxOP P 6,0 4 51
TPIIXJ10P 112,11 2 71
TeTPaX.Iop P 0,4 1 S

2,5-uII-epT-6yTH3 3 4,3 3X 19 71
2) 1,4-Ha qocM H jxiIo m 8 3X 5 722,3-)tificrnnit-l ,4-iia4pTOCeIIIXIIHOH 12 7X5 7
3) o-6cHaoce.%iHXII)Ia 10 3X3 73

4-TepT-6yi.-o6ell3oceCiiXiIIOH 6 2XI1 73
3 3-Ocim P 8 7 73

omiucnitun 1, 2, 3-de130J-
S2 TPIIOJI 7 2X3 [621

TIpipMi TpnAp.aMa 20 74
TpAH([)HIIn 20 3 7

15 1)Conit BIOPCTepa (no.10oKITn. II) 281
3 N-meTH3aat~ueHHan COIb 4 4 7

SNN-AHMCiTHJI 3 73 27 7

NN-v-nHNICTIf.I-NM~-AC..TepO 3,517x

T NI3CTII.33Hc11,.cHHag coab 88 I13X3 7
A1) Paa.in'HIrxC jtpyrlse paAiucaai 60 7 138

Kap6a3HX
AII4ITOpM3T 9 10 ~ 40
AifIUNIC3HJmeTHJI 48 2x35 j761
AXII-P.4HH311AHITPOKCHA 14 - 651

nu4)lIpAIIII~oy~bl11ft 60 9 38

PCa3H60 5 79

~ fTI)II)IM CIITI!. 60 25 2 1 x 4 7 6

1) Radical; 2) AH or distance between
outermost hf's peaks, oe; 3) number of'
hf's components; 4) literature; 5) A)
aromatic ions of'; 6) anthracenej 7)
benzene;18) m-dinitrobenzene; 95 di-
phenyl; 10) naphthalene; 11) naphtha-

lene with 13C; 12) naphthalene With
D; 13) nitrobenzene; 14) perinaph-
thene; 15) perilene; 16) tetracene;
17) trinitrobenzene; 18) B) hepta-
quinones; 19) 1) p-benzoheptaquinone;1 20 monomethyl-p-benzoheptaquinone;

21tetramethyl; 22) monochioro-;
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Key to Table 7.3 (Continued)

23) trichloro-; 24) tetrachlora-;
25) 2,5-di-tert-butyl ; 26) 2) 1,4-
naphthoheptaquinone; 27) 2,3-dimethyl-
1, 4-naphthoheptaquinone; 28) 3) o-
benzoheptaquinone; 29) 4-tert-butyl-
o-benzoheptaquinone; 30) 3-phenyl;
31) oxidized 1, 2, 3-benzenetriol;
C) perchlorates of triarylamine; 33)
trianisyl; 34) tridiphenyl; 35) D)
Wurster's salts (positive ions) non-
substituted Wurster's salt; 36) N-
methyl substituted salt; 37) NN-di-
methyl; 38) NN'-dimethy1; 39) NN-di-
methyl-NN'-deutero; 40) tetramethyl
substituted salt; 41) E) various
other radicals; 42) carbazyl; 43) di-
fluoronitrogen; 44) dimesitylmethyl;
45) di-p-anisylnitroxide: 46) diphen-
yldinitrosulfonIlhydrazyl; 47) aa-
diphenyl-p-picryl-hydrazyl; 48) per-
oxylamine disulfonate; 49) phenazine;
50) sodium-trimesityl-boron; 51) tri-
phenylmethyl.

formation of free radicals. A study of such radicals by the paramag-

netic resonance method is of great scientific and practical interest;

by now a considerable literature has been devoted to this problem.

Usually the substances are investigated in the solid phase or in liquids

with high viscosity, for in this case it becomes possible to accumulate

the radicals that are obtained as a result of the irradiation.

An investigation of objects irradiated with ultraviolet has ad-

vantages over work with x-rays or y-rays, for in the former case the

smaller size of the quantum makes the destruction of the molecules and

the formation of free radicals much more selective in character, and

therefore the observed spectra are simpler and easier to interpret. In

the case of x-rays, and particularly y-rays, one obtains sometimes a

whole set of different free radicals; consequently the paramagnetic

' resonance spectra becomes highly complicated.

The first work on the study of free radicals in irradiated sub-
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stances was carried out in 1951 by Shneider and his coworkers [80],

who investigated paramagnetic resonance in the polymer polymethylmeth-

acrylate, which was exposed to x-rays. A large-scale study of irradi-

ated substances began, however, only in 1955.

It was found that many substances (ethyl iodide, benzylaiine,

benzyl chloride, and others), dissolved in a suitable mixture of hy-

drocarbons (the most suitable one turns out to be a mixture consisting

of 5 parts of ether, 5 parts of isopentane, and 2 parts of ethanol*)

and vitrified by deep freezing, produce after exposure to ultraviolet

a paramagnetic resonance spectrum [81]. An analogous effect was ob-

served also in high-temperature organic glasses [82]. It turned out

further that along with the primary radicals, arising as a result of

direct action of the ultraviolet quantum, secondary radicals are pro-

duced as a result of interaction between the primary radicals and the

solvent [83]. It thus turned out to be possible to obtain paramagnetic

resonance spectra from radicals of substances on which ultraviolet

does not act directly. A particularly successful converter for radicals

was hydrogen peroxide, which produced the radicals OH upon irradiation

with ultraviolet.

From the hyperfine structure of the spectrum it is possible to

establish the nature of the secondary radicals. Thus, in the vitreous

solution of hydrogen peroxide in alcohol (CH3 )2HCOH, a spectrum of cer-

tain lines from six protons was observed after irradiation; it obvi-

ously belongs to the radical (CH3 )2 0H.

The widths of the lines in solid and vitreous systems containing

free radicals is larger than in liquid solutions, in view of the ab-

sence of the narrowing due to the Brownian motion. However, the width

S observed in glasses is nonetheless smaller than that expected for the

true solid-state arrangement of the atoms. This can be attributed to
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the internal rotation of the protons in the molecules of the free rad-

icals, which remain also at low temperatures [84).

In this connection, it is of interest to investigate the depend-

ence of the secondary spectra on the temperature of the vitreous sys-

tem. This investigation yields information on internal motion in the

glass, and sometimes makes it possible to separate the effects due to

individual radicals from the mixed spectrum, because the dependence of

the line width on the temperature is not the same in different radi-

cals. In particular, it was shown in [84] that the secondary radicals

in a solution of H202 in methanol are CH2OH and the biradical OH2.. .HC.

Let us proceed to discuss the results obtained by irradiation

with x-rays and y-rays. The spectrum of polymethylmethacrylate ob-

tained in 1951 [80] is so complicated that it took 7 years to inter-

pret [85]. It turned out to be due to a radical of the type R.CH2 -

- C(CH 3 )(COOCH3 ). It is easier to interpret the spectra of x-irradiated

amino acids. Thus, a triplet due to the radical CH2 [86] was observed

in glycine. Anisotropy of the spectrum in an irradiated single crys-

tal of glycine was reported in [87].

An investigation of y-irradiated paraffin hydrocarbons [88, 89]

has shown that in the case when the carbon chain does not contain too

large a number of atoms, the spectrum has one central component of max-

imum intensity, and higher molecular radicals of this type have two

components. This is evidence that in the former case the number of

equivalent protons closest to free valency is even, and in the latter

case it is odd. One can assume therefore that in hydrocarbons with a

short chain one obtains essentially radicals of the type CH2-CH2 -... ,

while in high-molecular ones one obtains the type ...- CH2 -CH-CH-....

The simplest of the hydrocarbons, methane, produces at 20.4 0K upon-r-

irradiation a paramagnetic resonance spectrum [90] consisting of four
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components with intensity ratio 1:3:3:1, which agrees with expectation

for the radical OH3.

Thus, paramagnetic resonance makes it possible to establish the

nature of the radicals that form upon irradiation of solid organic

substances. We mention here still other work on paramagnetic resonance

in substances irradiated with x-rays and T-rays. The following were

investigated in (91]: methyl alcohol, which produces three hyperfine

components; ethyl alcohol (five components); acetamide (three compo-

nents); propionamide (five components); acetanilide (three components),

and sodium methoxide (three components). Spectra of dimethyl-Hg (five

components) and diethyl-Hg (three components) were obtained in [86].

Reference [94] reports an investigation of glycine (three components);

alanine (five components); valine (complex spectrum); leucine (two

groups of five or more lines); isoleucine (without resolved structure);

cysteine (asymmetrical structu'e with four components); glycolic acid

(two components); and glycocyanine (two components). There is no doubt

that further systematic study of the influence of irradiation will

continue [93]. It is of particular importance to the investigation of

polymers, to the analysis of which we now proceed.

2. As is well known from chemical considerations, polymerization

of molecules frequently proceeds via free radicals. However, a study

of the kinetics itself of this process with the aid of paramagnetic

resonance is difficult because of the low concentration of the free

radicals. We therefore confine ourselves to a determination of the

free radicals, which form on the ends of the growing polymer chains

and which are fixed in the substance for steric reasons. This "freez-

ing" takes place when the polymer has already become partially polym-

perized to form a gel or when the polymer is insoluble in the monomer

and precipitates around the growing chains.
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The first investigation of this type pertained to polyvinyl gels

[94]. The spectrum observed in glycoldimethacrylate consisted of two

partially overlapping groups, containing five and four lines; the spec-

trum turned out to be independent of the initiator of the polymeriza-

tion and identical with the spectrum of irradiated polymethylmethac-

rylate. Both groups were recognized to belong to one radical

COOR

CI
-CH,-C"

CHs

as a result of superconjugation of the p orbit of the C atom with 15

orbits of the protons from the CH2 and CH3 groups [85].

In addition to investigating free radicals "frozen" in gels or in

polymer precipitates, the determination of radicals arising in ready

polymers upon irradiation is used. An interesting example of such re-

search is work on y-irradiated frozen (770 K) teflon [95]. After freez-

ing with the access of air prevented, a spectrum of 11 lines was ob-

tained; 10 of these form two partially overlapping groups of five

lines each and are due to the radical ...- CF2-C-CF2.. ., in which the

central 19F nucleus produces the principal doublet splitting, and the

four more remote fluorine nuclei split each line of the doublet into a

quintuplet. The eleventh line is connected with the peroxide radical

+-06, inasmuch as action of the oxygen in the air on the irradiated

teflon converts the entire spectrum into a single asymmetrical line

which coincides in position with the eleventh line of the oxygen-free

spectrum (95, 96]. The asymmetry of the line is connected with the

great localization of the unpaired electron on the oxygen.

In addition to the foregoing case, irradiation was used to inves-

, tigate the paramagnetic resonance spectra of the following polymers:

polymethacrylic acid, polyethylmethacrylate [97], polymethylchloracryl.
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ate, polyacrylic acid, polyvinyl alcohol, hydrolyzed polyvinyl acetate,

polystyrol, polythene, nylon, andpolyacrylonitrile [98].

The method of "freezing" in gels or inprecipitates was used to

investigate the free radicals obtained on polymerization of the fol-

lowing monomers: acrylonitrile methacrylonitrile vinyl bromide [85);

acrylic acid [1], methylmethacrylate [94], and a few other polymers.

The change in concentration of free radicals during the course of

polymerization was investigated with copolymerization of methylmethac-

rylate and glycol dimethacrylate as an example [99]. The action of in-

hibitors on the polymerization process was investigated in [100].

3. A rather unexpected discovery was the large resonance effect

in carbonized organic substances, discovered independently in [101-103].

In low-temperature pyrolysis products, the . factor of the only

observed line is very close to 2.0023, and the line width fluctuates

from 1 to 100 oersted. The intensity of the effect corresponds to be-

tween 0 and 1020 paramagnetic centers per gram of substance, and in-

creases rapidly with increasing carbon content from 80 to 94% [1041.

X-ray diffraction investigations have shown that it is precisely in

this region of concentrations that the formation of large groups of

carbon rings (from four rings upward) begins. It is noted that the

spin-lattice relaxation time also shortens with increasing concentra-

tion of the free carbon [105]. The shortest times Tl , on the order of

10-7 sec, are found in coal of the anthracite type [106, 107], which

gives rather narrow lines(6H from 0.7 to 0.3 oersted) and with strong

exchange effect (T1 = T2 ).

The disorganized ring structure and the arbitrary arrangement of

the carbon rings apparently weaken the exchange and lengthen the spin-

'lattice relaxation time in carbonlike substances with small contents

of free carbon. The properties of the paramagnetic resonance line
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change also with the temperature of the carbonization: the line inten-

sity increases with increasing temperature from approximately 350 to

approximately 5500C [1081. This is the temperature interval in which

the volatile pyrolysis products are removed and a ring carbon struc-

ture begins to arise. Above about 6000C, a sharp decrease in the inten-

sity of the effect begins. A decrease in intensity is observed also if

the concentration of the free carbon in the specimen is higher than

94%. The last two circumstances are apparently connected with the

graphitization of the specimens, on which multilayer three-dimensional

ring structures are produced, and this can lead to a partial pairing

of the free electrons and consequently to a weakening of the paramag-

netic resonance.

The intensity of the effect increases sharply upon removal of ox-

ygen of the air by pumping. The effect of the oxygen is reversible

[109, ll0, 106]. One can propose two possible mechanisms for the ac-

tion of 02 or other paramagnetic gases (in particular, for example,

NO2 [1061), which influence the effect in complete analogy with oxygen.

The first type of mechanism is purely physical; it consists of

the perturbation of the energy of the unpaired electron by the motion

of the biradical molecule of the adsorbed 02 relative to the electron,

or, to the contrary, by the motion of the electron relative to the sta-

tionary fixed 02 molecule. As a result of this perturbation, the life-

time of the excited state of the electron should become shorter, that

is, the spin-lattice relaxation time T1 becomes shorter. In this mech-

anism the number of paramagnetic centers in the irradiated substance,

and consequently the area under the resonance absorption curve, should

remain constant with increasing width 6H.

The other possible explanation has a chemical character. One can

assume that some very weak "quasichemical" bonds [1] (weak because they
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break when the oxygen is pumped out) are produced between the oxygen

and the carbon, such that the spin of the uncompensated electron loses

its effectiveness, becoming "paired" with one of the spins of the 02

molecules. The remaining unpaired second electron of 02 should be

strongly localized on the oxygen atom and should therefore result in a

strongly isotropic and broad line, which is consequently unobservable.

In such a mechanism, the area under the resonance curve should decrease.

It was shown in [Ill) that it is possible to select carbon specimens

in which the action of the oxygen follows either the first or the sec-

ond mechanism.

Many investigations devoted to the influence of the chemical proc-

essing of carbons has shown that in general paramagnetic resonance in

carbon is not connected with any separate chemical group, and is due

to the presence of uncompensated and strongly delocalized electrons in

condensed carbon rings as a whole (1]. The paramagnetic centers are

the result of a break in the bonds on the edges of the condensed rings,

leading for the most part only to a growth in the ring structure, but

which in individual cases can ensure also the appearance of uncompen-

sated spins; another possibility of spin decompensation lies in imper-

fections of the ring structures: the presence of individual five-or

seven-member rings should lead to the appearance of trivalent carbon

atoms. The electron of the "broken bond" should have a 7r orbit (which

guarantees the possibility of rather strong delocalization) with ad-

mixture of the a state. The presence of very large exchange in the ma-

Jority of the investigated carbons [1061 shows that the electron clouds

of the neighboring ring formations overlap in noticeable fashion.

In graphite and other high temperature carbons obtained at t >

> 14000C, paramagnetic resonance was also observed (112]. It is due

not to the conduction electrons, as was initially assumed, but to de-
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fects in the graphite lattice [113]. The unpaired electrons have in

this case a much more strongly localized a orbit. No resonance was ob-

served in carbons obtained in the temperature interval iooo-14000C.

A very important role can be played in future by research on para-

magnetic resonance in various blacks. These apparently represent a mix-

ture of high and low temperature carbons, since they are produced by

very rapid heating at 1000-1700°C. Their spectrum, however, is near to

low temperature carbons; in particular, it turns out to be quite sen-

sitive to oxygen, whereas paramagnetic resonance in graphite is not

affected by oxygen. The presence in blacksof unpaired electrons on de-

localized 7r orbits should undoubtedly play a role in the reinforcing

action of black introduced into rubber as a filler [1].

We note that paramagnetic resonance was observed in several tar-

like substances (asphalt, carbolite, etc.) and in petroleum oil [106].

4. A unique type of organic paramagnet is a biradical, namely a

molecule containing not one but two unpaired electrons. Among the bi-

radicals one can distinguish a whole gamut of substances, starting

with those in which the conditions brought about by the construction

of the molecule cause the spins of both unpaired electrons to be sep-

arated from each other and not to add up to unity spin, and ending

with such in which the spins interact quite strongly. The most reliable

results on paramagnetic resonance were obtained for biradicals with

noninteracting spins. These are, for example, 4 , 4 '-polymethylene-bis-

triphenylmethyl biradicals and para-substituted polyphenols, obtained

in [1142. All g factors of these substances are very close to 2.0023,

thus evidencing that the bond between the spins is practically nonex-

istent. The character of their spectrum, however, is the same as in

, monoradicals but naturally with twice the intensity per molecule.

Among the substances in which there are no grounds for assuming
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the coupling between the molecule spins to be negligibly small, para-

magnetic resonance was observed in the so-called Chichibabin hydrocar-

bon [115]

/0/ = =0=0= C

which should have the following structure in the excited triplet state:

The observed resonance signal corresponded to 4% of the triplet

state. In Ingram's opinion [1], one has no firm assurance that this

signal was not due to some paramagnetic impurity. On the basis of sev-

eral negative results on paramagnetic resonance, obtained on optical

excitation of the molecule to the triplet state, he believes that

these molecules have a very powerful relaxation mechanism which leads

to so strong a line broadening that the lines become unobservable.

However, in addition to Chichibabin's hydrocarbon, there are many

other compounds in which one can assume the presence of excited trip-

let states and which display paramagnetic resonance. These, in particu-

lar, are the two highly conjugate systems: 1,9-bis(2 furyl)-5 oxo-

),3,6,8-nonatetraene and 1,9-diphenyl-5 oxo-l,3,6,8-nonatetraene, in

which the weak resonance effect was noted in [1161.

Further, many solid molecular compounds between various phenylene-

diamines and halide-substituted quinones, investigated by Biyl, Kainer,

and Rose-Innes [149], also displayed paramagnetic resonance. Its oc-

currence was interpreted as the result of the formation of biradical

* ionic molecules due to the transfer of an electron from the donors

(phenylenediamine) to the acceptors (quinone). Finally, paramagnetic
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resonance in such compounds as heated bianthrone (g = 2.0036; AH = 10

oersted) [29], violanthrene (g = 2.00; LH = 26 oersted) [31), and vio-

lanthrone (g = 2.00; AH = 30 oersted) [31) could hardly be assigned,

without stretching the point, to any other factor except the presence

in these compounds of a certain fraction of molecules in the triplet

state.

5. To conclude this section, we mention investigations of para-

magnetic resonance in biological objects, which undoubtedly have a

great future and which already nowhave yielded interesting results.

Thus, in [117] there were investigated three radicals which are the

intermediate products in the oxidation-reduction processes that occur

with adrenaline, vitamin K, and other biologically important substances.

In [118] free radicals were observed in lyophilized tissues and liq-

uids of animals and vegetables, belonging to the albumins. In [119) an

investigation was made of the time dependence of the concentration of

free radicals upon illumination of an aqueous suspension of chloro-

plasts and of the decrease in this concentration after turning off the

illumination. Of great interest to biology are also investigations of

iron in hemin, methemoglobin, and their derivatives, results of which

are listed in the tables of Chapter 4 of the present book.

Particularly interesting are the investigations of Blyumenfel'd

and his coworkers, devoted to questions of paramagnetic resonance in

irradiated and nonirradiated albumins, and also in compounds of albu-

mins with ribonucleic acids [120-123]. Since we cannot stop to de-

tail these investigations, we must note that they uncover entirely new

prospects with respect to many problems in theoretical biology, and

particularly perhaps with respect to the question of the nature of in-

D heritance.

We point out, finally, that an attempt was made [1 to establish
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a correlation between the content of free radicals in tissues and the

growth of cancerous cells. This attempt, however, has not led to any

success.

§7.5. Inorganic Free Radicals. Paramagnetic Gases

So far we have considered organic substances with radical-like

character. The class of inorganic radicals is much less rich, but in

it we include , alongside with a small number of stable radicals, also

several unstable ones, which are produced in discharges, upon irradia-

tion, during the course of chemical reactions, etc. Among these radi-

cals there are some that are very important from the chemical point of

view. One can classify arbitrarily as free radicals various atomic

substances. A class of free radicals which is unique in the character

of its spectra is made up of paramagnetic gases. We shall consider

briefly in this section first free inorganic radicals in condensed

phases and then paramagnetic gases.

1. The spectrum of atomic hydrogen obtained upon y-irradiation of

the acids H2S04 , HC104 , and H3 PO4 frozen at 77°K turned out to be a

doublet with splitting A' = 500 oersted and with g = 2.00 [124, 125].

The maximum intensity of the effect in H2S04 was observed at a ratio

H2 SO4 :H2 0 = 1:5; further dilution weakens the effect, which disappears

in pure ice. These measurements were made in the centimeter wavelength

band. At low frequencies (350 megacycles) an effect due to atomic hy-

drogen in pure ice was observed with A' = 30 oersted (126]. The appear-

ance of this resonance in weak fields H only can be attributed appa-

rently to the large anisotropy of the & factor for "atomic" hydrogen,

observed in pure ice. The effects of atomic hydrogen and deuterium in

frozen systems were observed in [127, 128].

The radical products produced upon discharge in water vapor and

condensed at 770 K were investigated in [129]. The authors observed one
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line with g = 2.0085 and with weakly pronounced inflection correspond-

ing to g = 2.027. Upon heating to 138 0 K, the resonance disappeared.

Analogous results were obtained with D2 0 and H2 02 . In [130], in an in-

vestigation of the products produced at low temperature from vapors of

H2 0, H2 02 , and D2 0 dissociated in a glow discharge, one line was like-

wise obtained with a weak additional maximum on one of its skirts.

This maximum was interpreted by the authors of [130] not as an indica-

tion of the presence of a second radical, but as a consequence of the

anisotropy of the E factor. The observed effect was ascribed on the

basis of chemical considerations to the radical HO2 , and not OH.

Irradiated nitrates of several salts gave a spectrum ascribed to

NO2 and consisting of a triplet with A' = 50 oersted [131, 132].

Among the stable inorganic radicals, mention should be made of

the peroxides and ozonates of alkali metals (of the type MeO 2 and MeO3,

respectively). In the former the spectrum is due to the radical ion

0, and consists of one asymmetrical line with g, = 2.157 and g

= 2.002 [133]. In ozonates (NaO3 and K03) the line turned out to be

somewhat more symmetrical: gl = 2.003, g1 = 2.015 [134]. Dithionate of

sodium, in which the resonance is apparently due to the SO, ions, gave

a line with g = 2.01 and AH = 12 oersted [135].

Investigations of chlorine dioxide (Clo2 ) were already mentioned

earlier (see page 368) [12].

Let us mention, finally, the inorganic radical ion [(S03 )2No]2-,

the investigation of which in solution has been the subject of several

papers. It gives a triplet picture, due to the interaction between the

unpaired electron and the spin of the 14N nucleus. The energy levels

of the system, in investigations in weak fields, agree well with the

Breit and Rabi formulas for the case I = 1, S = 1/2, as was shown in

[135]. The mechanism of paramagnetic relaxation in solutions contain-
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ing the [(S03 ) 2 No] 2 ion was analyzed in detail by Lloyd and Pake

£136).

2. Diatomic and polyatomic molecules of certain gases are, in ac-

cordance with the definition given at the beginning of this chapter,

free radicals, inasmuch as they contain uncompensated electron spins.

These gases include, in particular, 02, NO, N02, C102, and also vapors

of some paramagnetic compounds. In addition to such stable gaseous

free radicals, there is also a large number of unstable substances of

radical-like nature, existing in a gaseous medium, for example 6H3 , 6H,

etc., the investigation of which were discussed above for the case

when they enter in the condensed phases.

Paramagnetic gases differ from the paramagnets considered above

in the strong coupling between the magnetic moment of the unpaired

electron and the moments of the rotational motions of the molecule.

Consequently the system of levels observed in the investigation of

paramagnetic resonance in gases turns out to be quite complicated.

The resolution of the spectral lines of paramagnetic resonance in

gases can be observed only at reduced pressures p. When p > 20 mm Hg,

the resolved lines are not observed in even a single case; actually,

the pressure employed usually does not exceed 1 mm Hg. This brings

about (considering the large number of spectral lines) difficulties in

the experimental work with gases, which calls for installations of

high sensitivity; the greater part of the research in this direction

was carried out by Beringer and Castle.

From among the investigated gases, the one with the weakest coup-

ling between electron spin and the rotation of the molecule is nitrogen

dioxide N02* At a pressure p = 10 mm Hg, a triplet structure is ob-

p served, due to the nitrogen nucleus; at p = 1 mm Hg, it begins to be

resolved into a large number of components; this was interpreted by
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Beringer and Castle as the Paschen-Back effect of free magnetic moments

of the molecule: the electron spin moment, the nuclear spin moment,

and the moment due to the rotation of the molecule. The level system

can be described by the expression

EAfs,M 1 ,1Aj=gP HMs+ AMsMI+BMsM,, (7.2)

where N is the rotational quantum number of the molecule. It was im-

possible to attain full resolution of the individual components [137,

138].

The NO molecule contains one unpaired electron and its ground

state is 2R. It is split by the spin-orbit couplirn into two doublet

levels with distance 120 cm-1 between them; of these, the lower level

2H1/2 is diamagnetic, since its projections of the spin and orbital

momenta along the axis are equal and opposite; the upper level, 2H3/2'

is paramagnetic. It splits further into several components because of

the interaction with the rotation. The resultant states are character-

ized by the total angular momentum J. The momentum J = 3/2 corresponds

to g = 4/5; this sublevel, split by the external magnetic field H into

a fine structure triplet, was indeed observed in [139]. Each peak of

the triplet has in turn a triplet hyperfine splitting due to the 14N

nucleus. The theory of the Zeeman effect in NO was presented in [14o].

The 02 molecule is a biradical; it contains two unpaired elec-

trons with parallel spins, while its angular moment along the axis is

zero. Its ground state is therefore 3E. Its orbital momentum combines

with the spin momentum, producing levels corresponding to J = K, K + 1,

where K is the quantum number of the total orbital angular momentum

(molecular + electronic). The levels K + 1 are practically degenerate

and are 2 cm-1 away from the level J = K. Therefore at a wavelength of

. approximately 5 mm one can observe absorption in the absence of an ex-

ternal magnetic field H. Superposition of the field H leads to a split-
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ting of the J levels and to the possibility of observation of magnetic

dipole transitions between the sublevels. In the region of fields H

= 3000 oersted, the coupling between the spin and orbital motion is

disrupted, and this leads to the appearance of a large number (approx-

imately 40) of resonance lines, due to the rotational levels. These

lines were described in [141]. The theory of the spectrum was presented

in [141-143].

In addition to stable paramagnetic gases, Beringer and his co-

workers investigated also atomic hydrogen [144], oxygen [145], and

nitrogen [146] in the gaseous phase. They used for this purpose a high-

voltage gas discharge in a U-shaped discharge tube, in which they

placed the corresponding molecular gases. This tube was directly con-

nected to a vertical tube passing along the axis of a cylindrical cav-

ity in the Ho11 mode. Recombination on glass was prevented as far as

possible by using suitable anticatalysts.

Dehmelt [1471 proposed to add to the investigated gas (which had

a partial pressure of about 0.01-0.1 mm Hg) inert gases at pressure

10-100 mm Hg. At such pressures it turns out to be possible to main-

tain a high arc temperature and thus dissociate by purely thermal

means molecules of all types. In addition, the inert gas decreases the

possibility of recombination, by slowing down the diffusion to the

walls. They used this method to investigate atomic phosphorus (4S3 /2).

The line turned out to be a hyperfine doublet with A' = 20 oersted.

Another method was used in [148] for the investigation of atomic io-

dine; for this purpose photodissociation induced by irradiation of 12

vapor directly in a resonant cavity was employed.
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Chapter 8

DOUBLE RESONANCE. CERTAIN APPLICATIONS

OF PARAMAGNETIC RESONANCE

§8.1. Introduction

So far we have considered resonant absorption of an alternating

electromagnetic field of one fixed frequency. Yet double resonance,

which consists of simultaneous resonant absorption of electromagnetic

radiation at two different frequencies, has found a variety of uses.

We consider the most important examples of double resonance: 1) the

Overhauser effect and other dynamic methods of nuclear polarization;

2) paramagnetic amplifiers and 3) optical investigations of paramag-

netic resonance.

In the Overhauser effect one investigates simultaneously electron

and nuclear paramagnetic resonance. Therefore, one of the frequencies

employed lies in the microwave range and the other at high radio fre-

quencies. An interesting application of this effect is the polariza-

tion of atomic nuclei.

Paramagnetic resonance is used for technical purposes to build

amplifiers with exceedingly low noise level. In these amplifiers one

uses for the most part fields with two different frequencies, lying in

the microwave band. Radiation at one frequency is used to supply

energy to the working medium; the other frequency pertains to the sig-

nal to be amplified.

In many investigations, the medium studied was subjected to the

simultaneous resonant action of radiation at optical and microwave
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frequencies. The combination of optical and radio research methods

turned out to be very fruitful and within a short time it yielded

' many interesting data both in the field of atomic spectroscopy and on

the theory of atomic collisions.

§8.2. Dynamic Methods of Nuclear Polarization

I. Overhauser effect in metals and semiconductors

Let us assume that the substance contains, along with particles

that have an electron magnetic moment, also particles that have a non-

zero nuclear moment. In a particular case, the electron and nuclear

moments can pertain to one and the same atom. In many cases the

mechanisms of electronic and nuclear spin lattice relaxation are such

that the saturation of the electron paramagnetic resonance leads to

considerable polarization of the nuclei. This effect was first con-

sidered theoretically by Overhauser [1] for metals.

At first glance the increase in nuclear polarization upon satura-

tion of electron resonance may appear paradoxical, since the equaliza-

tion of the populations of the different energy sublevels of the spin

system means an increase in its temperature. But an increase in tem-

perature should cause a reduction in the differences in population of

the different nuclear Zeeman sublevels. This paradox is resolved, as

indicated in particular by Van Vleck [2], by the fact that in our

case there is no single electron-nuclear spin system. In the processes

of interest to us there are involved three weakly interacting systems:

the K system, connected with the kinetic energy of the conduction elec-

trons of the metal; the Z system, the energy of which is due to the

interaction between the electrons and the external static magnetic

field (the Zeeman energy of electrons), and finally the N system,

which includes the Zeeman energy of the nuclei. These systems can have

different temperatures: TK, T and TN .
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Overhauser (3] has shown that nuclear spin-lattice relaxation in

metals is due essentially to the interaction between the moments of

the nuclei and of the conduction electrons:

a a(Iz(8 .)

where
S8n

-- 3 PrP A(r). (8.2)

Here r is the distance from the conduction electron to the nucleus and

6(r) is the delta function. The interaction (8.1) has a contact char-

acter and is isotropic, from which we see that the sum S + I is the

integral of the motion. Thus, it follows from the law of coiservation

of the angular momentum that under the influence of interaction (8.1)

the following transitions are possible:

Al,, * -% M - 1, in ,. (8.3)

Reorientation of the electron spin is accompanied by a reversal of the

direction of the nuclear spin.

It must be kept in mind that the electron Zeeman energy Ez =

= gBH0 M is approximately lO
3 times larger in absolute magnitude than

the nuclear Zeeman energy EN =-g0NHom*. Consequently simultaneous

reorientation of the electron and nuclear spins is possible if the K

system, into which the excess of the energy released goes, participates

in this process. Assume that the process (8.3) is accompanied by a

change in the kinetic energy of the conduction electrons EK4-EK.

It then follows from the law of energy conservation that

Er- EK-9PHO -gP He = o. (8 .4)

We denote by NK' NM, and Nm the number of particles per unit volume

in the states K, M and m respectively. For each pair of interacting

particles the probabilities of the direct and inverse transitions

(8.3) are the same. Therefore the number of direct transitions will
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be proportional to NKNMNm, and the number of inverse transitions pro-

portional to NKNM _ iNm + 1. Under stationary conditions we have

1 N ,N.i' M'NM_,M.+,. (8.5)

Since

N- exp1 E E= exp ( + N
NM- gH,. p gN N1 o (8.6)

AIM-- N exp -jTZ w.- e- _, -k -f'Z , +, t .k r

it follows from (8.5) that

I go +gNN _____

TN gPTO g .N TZ (8.7)

Under electronic resonance saturation conditions we have Tz . If we

recognize in addition that gNlgN<<g, we get

TN= TK N PN (8.8)

Thus, saturation of electron resonance reduces the temperature of the

nuclear Zeeman system by a factor Therefore, if we assume that

gHo<< kTK, we obtain
A. =P S (8 .9 )

Nm+1 - ATK

The polarization of the nuclei proceeds as if their magnetic moments

were to increase by g times. We note that the nuclear g factor can

be both positive and negative. Accordingly, the temperature of the

nuclear Zeeman system can assume both positive and negative values.

For simplicity, a Boltzmann distribution was used in the derivation of

(8.9). It is easy to verify that a Fermi distribution leads to the

same result.

Under the influence of the radio frequency field that saturates

the electron resonance, transitions are produced predominantly from

the lower electronic Zeeman level to the upper one. The relaxation

transitions of the electrons occur with large probability in the
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opposite direction, and consequently a stationary mode is established.

Among the various relaxation mechanisms, the one of importance to the

R Overhauser effect is that based on the electron-nuclear interaction

(8.1). The electrons going from the upper Zeeman level to the lower

one will continuously flip the nuclear spins in one direction or

another. The nuclear polarization will grow until the number of transi-

tions M, m - M - 1, m + 1, occurring under the influence of the given

relaxation mechanism becomes equal to the number of inverse transi-

tions. It is clear therefore that with increasing difference between

TN and TK the number of transitions contributing to the equalization

of these temperatures will also increase. The Overhauser effect is an

irreversible process of continuous transition of the electron Zeeman

energy into lattice vibrations. This effect can therefore be readily

interpreted by methods of thermodynamics and statistical physics

[4-9]; it can serve as a good illustration of the principal premises

of these theories. For the general theory of the Overhauser effect it

is important to consider the relaxation processes in two spin systems

[10, 11], that is, in systems containing two sorts of particles having

different magnetic moments.

In the derivation of (8.9) we have assumed that the mechanism

based on the interaction (8.1) is the only relaxation mechanism for

the nuclei. The relaxation time due to this mechanism will be denoted

by T'1 1 Yet there are also other spin-lattice coupling mechanisms. If

we denote the total spin-lattice relaxation time by T1 and, in addi-

tion, take into account the fact that the saturation factor q12 of

electron resonance can differ from 0, we obtain in place of (8.9)

_ TTK q.O (8.10)W. - +- -T,- q  n T -

This formula can be used only for specimens whose linear dimensions
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d are small compared with the skin layer depth 6. Azbel, Gerasimenko

and Lifshits (12] have shown that the Overhauser method makes it pos-

sible to polarize nuclei in specimens for which d>> 6. The point is

that the mean free path of the electron in the metal is much shorter

than the distance covered by the electron between two such collisions,

which change the spin orientation. There exists therefore a unique

"anomalous skin effect" for the magnetic moment. The polarization of

nuclei in specimens of arbitrary thickness has been calculated in [12].

The increased nuclear polarization

resulting from saturation of the electron

Zeeman levels should change the line

shape of the electron paramagnetic reso-

nance [13), since the field produced by

the polarized nuclei will be superimposed

on the external magnetic field.

The Overhauser effect was first in-

Fig. 8.1. Overhauser vestigated experimentally in lithium [14].
effect in lithium [14].
In the upper photograph, To avoid the difficulties connected with
the nuclear resonance
signal is lost in the simultaneous utilization of a resonant
noise. Below, the same
signal is amplified by cavity and a coil, the experiments were
saturation of electron
resonance, set up at relatively low frequencies, 13.4

megacycles and 7.96 kilocycles. Figure 8.1 shows a photograph in which

it is seen how much the nuclear resonance signal is amplified as a re-

sult of the saturation or the electron resonance. The Overhauser

effect was later on investigated in detail in sodium and lithium [15].

The use of the Overhauser effect to increase nuclear polarization

was extended also to semiconductors, which offers the following ad-

( , vantages: 1) the poor conductivity eliminates the difficulties con-

nected with the skin effect at microwave frequencies; 2) owing to the
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small number of conduction electrons, the nuclear relaxation times are

very large, so that the nuclear polarization effected with the aid of

4 the high frequency field can be separated both in space and in time

from the succeeding experiments on the observation of this polarization

with the aid of a relatively low-frequency field.

The experiments were carried out with silicon crystals doped with

phosphorus (16]. The polarization of the Si29 nuclei was retained for

several minutes.

It must be noted that Honig [17] drew erroneous conclusions from

his experiments on electron resonance in silicon containing arsenic

impurities. Measurements have shown that the resonance absorption line

has four hyperfine components in accordance with the value 3/2 of the

nuclear spin of As7 5 . Upon repeated passage through one end of the

same component, the absorption decreases exponentially as 1 - e- t/

with T = 16 sec. If one goes in succession through two neighboring com-

ponents within a time interval which is much shorter than 16 seconds,

by varying the field HO, then the intensity of the second peak will

strongly increase. Honig assumed at first that he had discovered a

method of 100 per cent polarization of nuclei at not too low tempera-

tures. He thought that the transitions between the electron Zeeman

sublevels, excited by the resonant radio frequency field, will rapidly

align the nuclear spins as a result of the hyperfine IS interaction.

The appropriate calculations were made by Kaplan [18]. However, later

experiments made by Honig and Combrisson (19] have shown that the

reason lies in the exceptionally long relaxation time.

2. Overhauser effect in nonmetals

The Overhauser effect can occur in substances which are not

metals or semiconductors (20-22]. Indeed, for the effect which we have

been considering in metals, the following two circumstances are
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significant: 1) one of the mechanisms whereby the electron spins are

relaxed is based on their coupling with the nuclear moments, which

calls for conservation of the total angular momentum; 2) this coupling

plays a decisive role in the relaxation of the nuclear spins; 3) the

possibility of conserving the energy during the time of these relaxa-

tion transitions is guaranteed by the continuity of the kinetic energy

spectrum of the conduction electrons; 4) under saturation conditions,

relaxation transitions from the upper Zeeman level to the lower one

exceed in number the transitions in the opposite direction.

Perfectly analogous conditions exist in many nonmetals: 1) to in-

crease nuclear polarization it is not essential to conserve the sum

of the electron and nuclear spins; it is merely important that the

probabilities of the nuclear spin flips m -tm' and m -- m' be unequal;

2) the hyperfine interactions determine the nuclear relaxation not

only in metals but in many other substances; 3) the conservation of

energy during the time of simultaneous flip of electron and nuclear

spins can be guaranteed by transfer of the excess energy to the

lattice vibrations in solids or to the Brownian motion of the particles

in liquids and gases; 4) if the lattice is in the state of thermody-

namic equilibrium, then the a priori probabilities of the relaxation

transitions from the upper Zeeman levels to the lower ones will always

exceed the probabilities of the inverse transitions.

Abragam [23] considered in detail the question of the Overhauser

effect in nonmetals for several important cases. He made the following

assumptions: a) the nuclear spin is I = 1/2; b) the external magnetic

field is strong, so that one can speak with good approximation of the

quantum numbers of the projections of the electron and nuclear spins

p on the H0 direction; c) there is no direct coupling between the

nuclear moments and the lattice vibrations; nuclear relaxation is
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realized by the magnetic interaction of the
'Vm
q nuclear and electron spins, which in general

case has the form

• Y,=la, (8.11)

-h where a is a symmetrical tensor. The operator

l can be written in the form
Fig. 8.2. Energy

level scheme in the Al (8.12)
case S = 1/2, I =_g9NNi,1/2. __-#

where j, = -(a/gNN) can be called the mag-

netic field produced by the electron at the location of the nucleus.

The field He is a random function of the time because random changes

are possible both in the tensor a and in the direction of the spin S.

We shall speak of relaxation of the first type if it is due to changes

in the tensor a, brought about by the lattice vibrations in solids or

by Brownian motion in liquids. Responsible for the relaxation of the

second type are electron spin flips resulting from the ordinary

mechanisms of electron spin-lattice interaction, independent of the

coupling with the nuclear moments.

We denote the states (M = 1/2, m = 1/2), (-1/2, 1/2),(1/2, -1/2),

(-1/2, -1/2) by a', a, b', b (Fig. 8.2), the summary population of the

levels a and a' by N+, and that of levels b and b' by N_. In addition,

we introduce the probabilities of the relaxation transitions between

the different electron sublevels:

Aaa, P Ab. = Ae*-IP A ( - a),
l,,w A,,,= A (I +,), , H =(8.13)

2kTr

For the probabilities of the other relaxation transitions we assume

Aa.b. t Abla's An Aa Ab. = XIA,
Ab,. )sA(I + e), Aab' -% XA(I - (8.14)
A.,b %X3A(I + ), A,,' PX 3A(1 -,).

If the electron transitions a -a' and b Ob' are saturated by a
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radio frequency field, then, as shown by Abragam, the nuclear polari-

zation is determined by the following expression:

V '+ X.-- (8.15)

Let us consider the following particular cases.

1. In the metals which we considered above, relaxation of the

first type takes place, determined by the interaction (8.1); therefore

X1 = X3 = 0 and consequently

N+=+ 2e, (8.16)
N_

which agrees with formula (8.9).

2. In liquids, if we assume that the nuclear relaxation pertains

to the first type and is determined by the magnetic dipole interac-

tions between the nuclei and the paramagnetic impurities, the coef-

ficients Xl, X2 and x3 are related as 3:2:12, that is, as the mean

values of the squares of the matrix elements of the operators CJk, tJk

and 4Jk (5.9). For the nuclear polarization we obtain

K =1  -. (8.17)

3. In diamagnetic crystals containing paramagnetic impurities,

the relaxation is of the second type. In this case x3 = X2 and there

is no Overhauser effect.

This result can be explained in the following fashion. Let us

consider the transitions that lead to the nuclear spin flip 1/2 -',-1/2,

namely a' -b -+b' and a -+b' -+b. The transitions b -+b' and b' -+b

are realized under the influence of the saturating radio-frequency

field and are not accompanied by a change in the nuclear spin orienta-

tion. On the other hand, the transitions a' -b and a -+b' are due to

the coupling with the lattice vibrations. Since the relaxation is of

the second type and is due to magnetic interactions of the electron
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and nuclear spins, the probabilities of both processes turn out to be

the same (x2 = X3 ); as a result the lattice acquires no energy what-

4 ever, meaning that additional polarization of the nuclei due to elec-

tron resonance saturation is impossible.

4. For substances containing paramagnetic atoms with nonzero

nuclear spin, the calculations have been carried out under the assump-

tion that the hyperfine structure of the resonance line is resolved

and has an isotropic character. In this case x3 = 0 and the polariza-

tion is

N+ 1+ 2!
+% (8.18)

where = x2/xI. If we saturate not both but one of the electron tran-

sitions, then

N+ __ I + C.2(8.19)

The theory of relaxation transitions between hyperfine energy sub-

levels was developed by Valiyev [24], who calculated the values of X1A

for typical ions of the iron and rare earth groups. The appropriate

calculations for ions in the S states were made by Bashkirov (25]. The

Overhauser effect was considered also theoretically for the case S =

= 1/2, I = 1 with the ion 64Cu as an example. It was shown there that

simultaneous saturation of one electron and one nuclear resonance re-

sults in nuclear polarization of the same magnitude as in the satura-

tion of all the electron transitions [26].

Khutsishvili [27] has considered the question of polarization of

nuclei belonging to paramagnetic atoms in nonmetals, by saturating only

one of the hyperfine structure components. It turned out that it is

most convenient to saturate the m = 0 line if the nuclear spin I is

even and the m = + 1/2 if I is odd.

The Overhauser effect in nonmetals was investigated experimentally
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in many cases: on the protons of the free radical diphenylpicrylhydra-

zyl (28], on protons [29), on Li7 and F19 nuclei (30] in solutions con-

4 taining the free radical (S03 )2NOK2 , and on protons contained in ben-

zene absorbed by carbon (31).

3. Method of adiabatic passage

The Overhauser method of nuclear polarization is applicable if

the mechanism of nuclear spin-lattice relaxation obeys definite con-

ditions. The method proposed by Feher (32], based on adiabatic rapid

At m passage through the paramagnetic resonance lines

(see §8.4) is suitable for substances that have a

hi' resolved hyperfine structure independently of the

nature of the nuclear and electron spin-lattice

hrelaxation mechanisms. The idea of the method will

-Il
14 be illustrated with the aid of Fig. 8.3, which

Fig. 8.3. Dia- shows the Zeeman energy levels as functions of the
gram showing
nuclear polar- applied magnetic field H0 in the case S = 1/2,
ization by the
adiabatic pas- I = 1/2. By ve and vN we denote the frequencies of
sage method.

the microwave and radio frequency fields applied

perpendicular to HO . By decreasing the field H0 to a value H1 , we ex-

cite the electron transitions M = -1/2, m = 1/2--M = 1/2, m = 1/2.

If this is done under conditions of adiabatic rapid passage, then the

vector of electronic magnetization will turn through 1800, and this

will cause an inversion of the populations of the corresponding sub-

levels. The difference in populations of each pair of nuclear sub-

levels, pertaining to one and the same electron state, will now be

determined not by the nuclear but by the electronic Boltzmann factor,

something that can be readily observed by the nuclear resonance

method. In this case, however, the population of both sublevels with

m = +1/2 is equal to the population of the sublevels with m = -1/2,
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and consequently on the whole there is no nuclear polarization. In

order to obtain it, we pass adiabatically through nuclear resonance,

to which the field H2 corresponds. Since the energy interval hvN be-

tween one pair of nuclear sublevels is not equal to the interval be-

tween the other pair of sublevels, as a result we obtain nuclear polar-

ization equal to

N, 2 . (8.20)
N_

This polarization vanishes after a time interval equal approximately

to the nuclear relaxation time; the situation can be restored by re-

peated variation of the field H0.

If we effect adiabatically the fast transition Am = 1, AM = 0,

then the electron resonance will change strongly. Thus, we have a

sensitive method of investigating nuclear resonance by observing the

electron paramagnetic resonance absorption.

An experimental verification of the adiabatic passage method was

carried out by Feher and Gere [33]. The experiments were set up with

a silicon crystal containing phosphorus amounting to approximately

3 • 1016 atoms of P3 1 per cubic centimeter. Earlier investigations

(§6.3) have shown that it is possible to observe in this substance the

hyperfine structure of paramagnetic resonance lines as a result of

interaction between the donor electron and the magnetic moment of the

P3 1 ; the electron relaxation time was found to be quite long.

In the experiments of Feher and Gere, the external field at

which the transitions were investigated was approximately 3130 oersted,

and the specimen temperature was 1.25 K. The electron resonance line

was observed by a superheterodyne method without the use of field

modulation. The microwave cavity was made of pyrex coated on the in-

side surface with a thin layer of silver. This insured the penetration
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into the cavity of the radio frequency field necessary for excitation

of the transitions between the nuclear sublevels. The amplitudes of

the microwave and radio frequency fields in the specimen were on the

order of 0.001 oersted. The constant field H0 changed within approxi-

mately four seconds from an initial value 3150 oersted to 3110 oersted,

after which it again returned to 3150 oersted.

The results of the experiments confirmed Feher's calculations.

In the absence of a radio frequency field, the amplitude of the elec-

tron resonance line changed little in the secondary passage through

resonance; on the other hand, if a radio frequency field was applied

during the interval between the first and seccnd passages to induce

the transition hvN (see Fig. 8.3), then the intensity of the electron

resonance line decreased sharply during the second passage, thus evi-

dencing the presence of nuclear polarization. An analogous method was

used in (34].

4. Method of parallel fields

Jeffries (35] proposed to use for nuclear polarization the forbid-

den transitions that appear in the case when the alternating and

static magnetic fields are oriented parallel to each other, as a re-

sult of the fact that the hyperfine interactions cause a slight

overlapping of the states with different values of M and m. If the

A ( x
hyperfine interaction operator has the form AI S + B(I x + I Y

then the wave functions, which in the zero approximation are equal to

*(M,m), will assume in the next approximation the form #(M,m) +

+ a(B/H)*(M+ 1, mF 1).

By way of illustration we consider the case S = 1/2, I = 1/2

(Fig. 8.4). The solid arrows denote the transitions that are possible

in the usual mutually-perpendicular arrangement of the alternating and
4.

static magnetic fields (AM = 1, Am = 0). The dashed arrows show the
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"forbidden" transitions, which arise in the
- - case when the fields are parallel. With this,

7 - " from the form of the perturbed wave functions
I' IIit follows that A(M +m) = 0. If we saturate

- the transition M = -1/2, m = + 1/2 --M = 1/2,

Y 4 m = -1/2, with a radio frequency field,

Fig. 8.4. Scheme of polarization is immediately produced:

nuclear polarization
by the parallel N+/N = 1 - E.
field method.

If the polarized nuclei are radioactive, then

the polarization can be detected from the resultant anisotropy of the

gamma radiation. The effect will in this case be proportional not to

the number of atoms participating in the paramagnetic resonant absorp-

tion, but to the number of radioactive decays. This method is therefore

particularly convenient for the study of short-lived nuclei.

The Jeffries method was used to polarize radioactive Co60 nuclei

contained in the single crystal La2Mg3 (NO3 )1 2.24D20 [36]. The ratio of

magnesium to its isomorphic cobalt-isotope substitutes was Mg:Co59:

:Co60 = 10 4:50:1. The measurements were carried out at a frequency of

9.3.109 cps at a temperature 1.6°K. The Z axis of the crystal was per-

pendicular to the static and the oscillating magnetic fields. The

paramagnetic absorption in Co60 is very weak and cannot be measured

directly. Paramagnetic resonance is detected by the anisotropy of the

gamma radiation. The spectrum contained 21 = 10 lines in accordance

with the well known value of the spin of the Co6o nucleus. The follow-

ing ratios were obtained for the line intensities: 83:100:83:52:18 in

good agreement with the predictions of the theory [37].

5. The method of Abragam and Proctor [38]

Let us assume that the substance contains electron and nuclear
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paramagnetic centers. For simplicity we assume that the spins of the

centers are S = 1/2, I = 1/2. Assume that some interaction exists be-

t tween the electron and nuclear spins, say magnetic dipole coupling.

This coupling causes an overlap of the electron and nuclear states, so

that the wave functions assume the form *(M,m) + a*(M',m') where a<< 1.

Let us assume that an alternating field of frequency v = ve + VN

is applied perpendicular to the static field HO . Then, with a certain
2

probability P proportional to a , simultaneous reorientation of the

electron and nuclear spins begins. We denote the time of the electron

spin-lattice relaxation by Tle and the corresponding time for the

nucleus by TIN. Let l/TiN < P < l/Tle' Then obviously after the onset

of dynamic equilibrium the ratio of the populations of the Zeeman

levels of the nuclei will be the same as that of the electron levels.

A similar effect can be obtained by applying energy at the

difference frequency ve - VN. In this case, obviously, the electron

spin flip will be accompanied by a reorientation of the nuclear spin

in the opposite direction.

Abragam and Proctor [38] verified experimentally their proposed

method using a LiF single crystal. The experiments were carried out at

a frequency v = ve t VN = 9.4 megacycles. The attained increase in

polarization of the Li 6 nuclei was approximately by y(F19):.y(Li6 ) =

- 6.5 times.

The further development of this method is described in (120]. In

particular, it became possible to polarize nuclei of aluminum in

corundum with chromium impurity [121].

§8.3. Paramagnetic Amplifiers and Generators

Ordinary radio devices which use vacuum tubes, klystrons, mag-

netrons, etc. convert the kinetic energy of charged particles into

energy of a radio frequency electromagnetic field. For many reasons,
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the possibility of obtaining radio frequency electromagnetic energy

by using the internal energy of atoms and molecules in an excited

' state is very attractive. This idea was first realized with the aid of

molecular beams* [39-41]. Molecular generators have found many impor-

tant applications because of their exceedingly high frequency stabil-

ity, but cannot be used extensively for technical purposes owing to

their unusually low power and limited range of operating frequencies.

Such a device can be used in principle also as an amplifier with ex-

clusively low noise level. However, such an amplifier has not found

practical use because of the exceedingly narrow band of the frequencies

amplified by it and the impossibility of tuning it.

It has recently become possible to use paramagnetic resonance in

solids to produce amplifiers which have equally low noise, but have a

much larger band width and can be readily tuned over a wide range.

Along with paramagnetic amplifiers, it is possible that paramagnetic

generators will also find technical applications, particularly in the

range of millimeter and submillimeter wavelengths.

The operating principle of paramagnetic amplifiers and generators

consists in the following. We have seen in §1.5 that unlike the optical

range the probabilities of spontaneous transitions in the radio fre-

quency band are exceedingly small. We can therefore speak here of the

use of induced emission. In addition, whereas in optical light sources

each atom radiates independently of the other and the radiation is

therefore not coherent, in the radio band the radiation is coherent;

there exist definite phase relationships between the induced emission

and the radio frequency electromagnetic field that causes it.

We now consider a medium containing a large number of paramagnetic

centers, each of which has a definite system of energy levels. Let

Em and En(Em > En) be a pair of levels, the interval between which lies
n M n

-421-



in the radio frequency band.* We denote by Nm and Nn the number of'

paramagnetic centers per unit volume at the levels Em and En . We assume

tthat the medium has in some manner been placed in such an equilibrium
state, by which the number of centers in the upper level is larger than

in the lower one. A discussion of different methods of exciting the

medium will be presented in the following sections. We assume also that

the relaxation mechanisms are of low efficiency and that therefore

the transition of the paramagnet into equilibrium state resulting from

internal interactions is relatively slow. Let now a weak radio signal

of frequency vmn = Em - En/h be incident on the medium. Under the in-

fluence of this signal, transitions Em - En occur, the probabilities

of which are the same for both possible directions. But since N. > Nn ,

the paramagnetic resonant absorption will be negative. In other words,

radiation will take place, the power of which, according to (1.7) and

(1.11), can be estimated with the formula

R'Am-NI nI1, (8.21)

We note that the quantities (Nm - Nn), < m I x I n > and Av can-

not, strictly speaking, be regarded as independent of one another. In-

deed, the more appreciable the spin S of the paramagnetic centers, the

larger will be the matrix elements of the magnetic moment. But an in-

crease in S, that is, in the number of spin levels, brings about a de-

crease in Nn and N m . At the same time, the increase in S can bring

about an increase in the resonant width Av. In speaking of the width

of a resonance line it is necessary, as we already know (see §5.8), to

distinguish between the "inhomogeneous broadening," due to the inhomo-

geneity of the fields acting on the different paramagnetic centers,

and the "homogeneous broadening," which is a result of dipole-dipole

and exchange interactions between like particles and due to other
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factors. The sources of the inhomogeneous broadening - the spins of

the nuclei belonging to the diamagnetic atoms, the inhomogeneity of the

' applied magnetic field, the inhomogeneity of the crystalline fields,

etc. - begin to play a lesser role with increasing concentration of

the paramagnetic centers. An increase in the concentration, and conse-

quently also in (Nm - Nn) is accompanied, starting with a certain

minimum value, by an increase in the width Av.

The simpliest amplifier, and at the same time the one having many

advantages, can be visualized as consisting of a wave guide filled with

an active paramagnetic substance. The traveling wave will increase in

power as it propagates, so that the power gain, neglecting losses in

the wave guide, turns out to be

= exp (a, (8.22)

where 1 is the length of the wave guide and a = APizl/Ppad, while A is

the area of the transverse cross-section of the wave guide. The power

of the incident wave is

....A A H- (8.23)

It follows from (8.21) and (8.23) that

_ ,%,,-) <,, I , at n ,>1 q (8.24)
ch .Av

Calculation shows that for real values of (Nm-- Nn)/Av the length of

the wave guide must be very large, on the order of several meters, in

order to obtain noticeable amplification.

In order to reduce the amplifier dimensions one employs resonant

cavities in lieu of wave guides. If the nonmagnetic losses in the

medium and the losses in the cavity walls are smaller than the power

radiated by the paramagnet, then the energy stored in the cavity will

O build up and in this case the induced emission of the paramagnetic

centers will occur not only under the influence of the weak radio
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signal, but also under the influence of the radiation previously

emitted by the paramagnet. Thus, a cavity filled with an active para-

magnetic medium can be regarded as a resonant system with positive

feedback.

This system can be characterized by means of a negative figure of

merit Qm, connected with the magnetic "losses," the figure of merit

QO' determined by the nonmagnetic losses inside the cavity, and by the

figure of merit Qe' due to the external losses resulting from the

coupling with the wave guide or with the coaxial line. According to

(1.10) we have

I 4I13A (8.25)

where ( 2)V is the value of H averaged over the volume of the cavity.

Our system will operate like a generator if the self-excitation condi-

tion

Q,. > 0- +-- a; (8.26)

is satisfied. The power of the generated oscillations will be limited

by the saturation effect, for if the populations of the levels Em and

En start to become equalized, the increase in the power of the induced

emission will stop. The saturation causes the self-oscillating system

considered here to be nonlinear and thereby determines the amplitude

of the steady-state oscillations in the cavity. The system will oper-

ate like an amplifier if

I + > >- •(8.27)

If we denote again the power gain by g2, we can readily conclude that

for a cavity type amplifier the following formula holds true*

=a + (8.28)
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The amplifier bandwidth B can be defined as the ratio of the frequency v

to the Q of the apparatus:

I7- (8.29)

Usually QO is sufficiently large so that the last two formulas assume

the simpler form

Q,+Q, ' (8.28a)QMOr+Q,

W(8.29a)

Multiplying these expressions we obtain

-T.) (8.30)

If the gain is large, then Qe and I QmI should be practically the

same. We therefore have

S= (.31)

We see that the product of the square root of the gain and the band-

width is a quantity that remains approximately constant for an ampli-

fier in which the configuration of the resonant cavity and the volume

of the paramagnetic medium remain constant. It is seen from (8.28) and

(8.29a) that if the gain is large, then the power gain 2 and the

band width B are very sensitive to relatively small variations of Qe

and Qm" However, no matter how large the variations of ga and B may

be, the product of these quantities remains almost constant.

Paramagnetic amplifiers and generators have important advantages.

First, the amplifiers are rid of many noise sources that are inherent

in electronic devices, and their noise temperature amounts to several

degrees Kelvin. Second, paramagnetic generators and amplifiers have no

upper frequency limits, since the frequencies of the generated and

tamplified oscillations are determined by the intervals between the4.

spin energy levels. These intervals can be made sufficiently large
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by a suitable choice of the medium and by increasing the static mag-

netic field within permissible limits.

4 No practical paramagnetic generators have been created to date.

We shall therefore consider henceforth only amplifiers and only of the

cavity type.

The main advantage of paramagnetic amplifiers, namely their high

sensitivity, is connected with the low level of the intrinsic noise.

Many special investigations have been devoted to this problem [43-451.

The low noise level in these devices is insured primarily by the fact

that they, unlike devices using vacuum tubes and semiconductors, con-

tain no free charges and therefore are not subject to the shot effect,

nor are there any flicker noises, excess noises, etc. The lower noise

limit of paramagnetic amplifiers is determined by the spontaneous

emission. Noise in paramagnetic amplifiers can be characterized by an

effective noise temperature Tn, the magnitude of which is approximate-

ly equal to the absolute value of the effective spin temperature Ts .

The use of low (helium) temperatures, which is necessary for effective

operation of the amplifier (so as to increase the difference in level

populations and to lengthen the relaxation time TI) contributes at the

same time to a reduction in the noise levels.

Strandberg [45] calculated the noise figure Ksh of a paramagnetic

amplifier.* The formula he obtained for a resonator type amplifier has

the following form:

),(g) t) p,( ) p, (T) +

+ ga+ I+ (e 2.V)

The values of many of the quantities contained in this formula can be

understood by referring to the schematic diagram of the amplifier

(Fig. 8.5). Ta , Tt, and Tc denote the temperatures of the antenna
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(signal sources), transmission line, andrM

the paramagnetic medium, respectively. T0

R1 - is the temperature at the output of the
7,

cavity (load temperature), t is the power/
X loss factor in the transmission line, that
Antenna is, the ratio of the output power to the

Fig. 8.5. Temperature
parameters determining power at the input of the transmission
the noise figure of a
paramagnetic amplifier, line. The parameter Tm has the dimension of

temperature and can be determined from the

following formula:

N, I h-,n.= -h-i m) (8.33)
Nm + N h 2kT"

If j is the number of spin levels of one particle, then

N,. + N, 2 . (8.34)-'2'

From (8.33), (8.34), (8.21) and (8.25) it follows that

T - --[ A rt , - - .' ( 8 .3 5 )
-- 2k 8r.'qNoQm I (mn I , 111 1 "f

In accordance with Planck's formula, the mean oscillator energy at

temperature T is
hv

, M = exp (l/kl) -- 1 "(8.36)

Usually hv<< kT and therefore p (T) kT. If we assume further-

more, first, that the losses in the transmission line are small and

t 1 1, and second that the gain is appreciable ga>> l, then (8.32)

assumes the simpler form

Ki , (8.37)
Ta Q6 T. T.

and the noise temperature will accordingly be

T(,+ (8.37a)

It is easy to see that by choosing the amplifier parameters we can
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make the noise Ksh close to unity and Tn = Tm . An additional noise

source is produced if the excitation of the working medium is carried

t out by the saturation method (see §8.5). Weber (46] has shown that the

corrections to formula (8.32) brought about by this fact have no

practical significance.

The most important problem arising in the construction of a

paramagnetic amplifier is the choice of the working medium and the

determination of the methods for its excitation. It is obvious that

there is a great variety in the methods of exciting paramagnetic cen-

ters in the case of particles with effective spin S' > 1/2, that is, in

the case when the number of spin levels exceeds two. We shall therefore

consider in the following sections two- and three-level amplifiers

separately.

§8.4. Two-level Paramagnetic Amplifier

All the methods proposed for the excitation of paramagnetic cen-

ters with effective spin S' = 1/2 consist in inverting the populations

of the Zeeman energy sublevels. In the equilibrium state, the ratio of

the populations of the lower [1] and upper [2] spin levels is

, - = 't(8.38)

The problem consists of inverting this ratio for a more or less pro-

longed time interval. Let us stop to discuss three possible methods of

inverting the populations of the spin levels.

a) Nonadiabatic change in direction of the static magnetic field

The simplest method of accomplishing the indicated purpose is by

rapid (nonadiabatic) change in the sign of the applied static magnetic

field HO . The ratio N1/N2 is then reversed, the most populated lower

level becomes the upper level, and vice versa. The reversal in the

field H0 must be so fast as to satisfy the nonadiabaticity condition
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[47], which in our case has the form

I dtIdt >2 V . . (8.39)

The lower the precession frequency vO, that is, the smaller the field

H0 , the easier it is to satisfy this condition. However, the field H0

cannot be made as small as desired, for it must appreciably exceed the

width of the resonance line: Hmin>> AH.

It is therefore most advantageous to proceed in the following

fashion: Reduce the field H0 adiabatically and slowly to a value Hmin'

and then carry out nonadiabatically and rapidly the reversal Hmin -

-- Hmin followed by an adiabatic and slow reduction of the field to

-H0. It is obvious that this entire procedure should be performed with-

in a time much shorter than T1. By way of an example let us assume that

AH - 0.1 oersted, Hmin = 0.5 oersted; then, in order to change the

field H0 by 1 oersted, it is necessary in accord with (8.39) to have a

time interval of about 5 •1 sec. Field changes of this type can be

produced presently by modern pulse techniques. The method described by

us has been used for the time being only in nuclear paramagnetism (48].

However, it has a great advantage over other methods of excitation of

paramagnetic centers in that it does not need the'application of an

additional radio frequency field. One can therefore expect that non-

adiabatic change of magnetic field direction will be used for the

construction of microwave generators of very high frequencies.

b) Adiabatically rapid passage

Bloch [49] has shown that the spin level populations can be in-

verted by rapid but adiabatic passage through resonance, by changing

the frequency of the alternating field or the intensity of the static

field. Without dwelling on the calculations which lead to this result

by a solution of (5.1) (see, for example, [50,51]), let us illustrate
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this method with the classical model.

The behavior of a dipole in a magnetic field H is best investigat-

ed by changing over to a coordinate system rotating with a certain

angular velocity w. In the rotating coordinate system the motion of'

the dipole will be determined by the same equations of motion as in

the inertial coordinate system, provided we assume that the dipole is

acted upon not by the field H but by the effective field [52]

H,, -- _ _(8.40)

The magnetic moment of the dipole will precess in this case with cir-

cular frequency cWeff = yHeff . We now put, as usual H = H0 + Hl , where

is the static field and H 1 is a small field rotating uniformly with

1-- / /" *. - -o N

yA , s
#
1

Fig. 8.6. Effective magnetic field in a coordinate
system rotating with angular velocity w about the
field H0 .

frequency w in a plane perpendicular to HO. Figure 8.6 shows the

three possible cases:

7llo>w, 7Hj=w and yHo<W.

4W We see that if the change in Heff is adiabatically slow, then the sign

of the magnetization vector reverses after passing through resonance,
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and consequently the distribution of the particles over the spin

levels is reversed: N2 > N1 . The adiabatic change in Heff denotes that

the relative reduction in Heff during the time 1/Wef f should be small.

The smallest value of Herf is H1 . Therefore the adiabaticity condition

has in our case the form

(~u1 <U; (8.41)

if we denote by At the time necessary to change the field H0 by an

amount equal to the half width AH of the resonance line. At the same

time, passage through resonance should be rapid, for it is necessary

to satisfy also the condition

At < T1. (8.42)

The method of adiabatically rapid passage has the following advantages:

1) there is no need for good stabilization of the frequency v of the

field H1 ; 2) the time of passage At can change over a wide range.

c) 1800 pul3e

Let us assume that the paramagnet is under resonance conditions.

If we change over to a coordinate system rotating with resonant fre-

quency, then Heff = H1. Consequently, the magnetic dipole is acted

upon only by the constant magnetic field H1 (Fig. 8.6b). The magneti-

zation vector will precess about H1 with angular frequency 1 = yH1.

If we use in place of a continuously acting alternating magnetic field

only a pulse of duration

'
en (8.43)

then the direction of the magnetization vector will change by 1800 and

the spin levels will be inverted. The inversion, however, will not be

complete if, first, H1 is not appreciably larger than the resonance

width AH, and second if the condition (8.43) is not satisfied with

great accuracy. It goes without saying that the duration of the pulse
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t should be much shorter than the relaxation time T1 . The "1800

pulse" method is more convenient than the "rapid adiabatic passage"

t in that it consumes less alternating magnetic field power and a

shorter time interval for the inversion of the spin levels (50).

The operation of a two-level amplifier can be visualized in the

following fashion. At first the working medium is in the equilibrium

state. Then the spin levels are inverted for a time t1 by one of the

methods considered above. Following this, for a time t2<< TI, the am-

plification process occurs. Then the thermal equilibrium is restored

for a time t We see that the two-level amplifier is an intermittent-

ly acting device. The time intervals t2 of active operation are

divided by "dead" intervals t3 + tI. If the thermal equilibrium occurs

in a medium that is left alone, then the time t3 will be very large,

on the order of TI. We propose here two methods for accelerating the

transition to the equilibrium state.

The first method consists of illuminating the paramagnet. This

method is suitable if the working medium is a doped semiconductor,

such as silicon doped with elements of group V (P, As, Sb) or lithium.

In these semiconductors, at heating temperatures and at concentrations

N 0 1017 - 1018 cm -3 , the time T1 runs into many seconds (see §6.2).

Under the influence of the illumination, the relaxation time is shor-

tened to several microseconds. If we take account of the fact that the

time t1 amounts to in the worst case several milliseconds, we see that

the "dead" time can be made negligibly small, and the amplifier oper-

ates almost continuously.

The second method of shortening t3 consists in the following. We

use as the working medium crystals containing paramagnetic particles

of two types. Let the relaxation time T1 of the particles of one type

(A) be several orders of magnitude higher than that of particles of
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the second type (B). These two sorts of particles, of course, have

different spin level systems. The active paramagnetic centers of the

t amplifier are the particles A. After the end of the period t2, the

static field H0 is changed such as to make the interval between the

spin levels of particles A equal to the interval between any pair of

spin levels of the particles B. Then, owing to the spin interaction,

the energy will be transferred from particles A to particles B, and

then very rapidly to the lattice. This type of decrease in relaxation

time was experimentally investigated in several cases [53].

Let us determine the condition for the amplification, assuming

that relaxation losses can be neglected. We denote by (H )S the square

of the alternating magnetic field intensity averaged over the volume of

the paramagnetic specimen. We assume that I <m I Px I n> I = 0, Nm -

- Nn = Nohv/2kT. Then from (8.27), (8.25) and (8.21) it follows that

amplification will take place if

NO>" (8.44)

The first attempt at constructing a paramagnetic amplifier was

carried out using silicon doped with phosphorus under the following

experimental conditions [54]: v = 9000 megacycles, Q = 10,000,

T = 20K, Av = 4 lO - ( )V'-_ After substitution of these

values, condition (8.44) assumes the form No > 1017 cm-3 . In the ex-

periments described this condition was not fulfilled and therefore

the sought effect was not observed. Positive results were obtained by

Feher et al. [55], who replaced the natural silicon by isotopically

pure (99.88 + 0.08%)Si28 , as a result of which the paramagnetic reso-

nance line was narrowed down from 2.7 to 0.22 oersted, since the in-

homogeneous broadening due to the hyperfine interaction of the elec-

tron shell of the phosphorus with the Si29 nuclei disappeared. The
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experiments were set up under the following conditions: N0 = 4 lo 6

cm , T= 1 mi at temperature 1.20K, v = 9000 megacycles, Q0 20,000.

Excitation of paramagnetic centers was by the method of rapid adiabatic

passage.

Working media successfully used for two-level amplifiers were

quartz and magnesium oxide, the paramagnetic centers in which were

produced by strong neutron bombardment [56]. The level inversion was

by the method of adiabatic passage. The frequency of the amplified

signal was v = 9000 megacycles, the Q of the loaded cavity was Q =

= 6000, and the temperature was 4.20K. In the experiments with quartz,

the number of paramagnetic centers was No = lO
18 . The inverted state

lasted about 2 milliseconds. If the signal is amplified 1.2 milli-

seconds after the level inversion, then gaB = 5 • 106 sec- 1 with the

gain changing from 8 to 21 db. In experiments with MgO, the number was

No  l 17. The inverted state lasted approximately 2.5 milliseconds.

A gain of 20 db was observed 125 microseconds after the level inver-

sion.

In conclusion, we note that continuously operating two-level am-

plifier designs were proposed [57), based on the use of mechanically

rotating devices.

§8.5. Three-level Paramagnetic Amplifier

1. Operating principle

If the number of spin levels of paramagnetic centers exceeds two,

then the excitation of the working medium can be effected by saturat-

ing the electron resonance. Let us assume that the particles have

three spin levels (Fig. 8.7). We assume also that saturation has been

produced with the aid of an oscillating field of frequency v31 and of

Z sufficient power, so that the populations of levels E1 and E3 have be-

t come equalized: NI  N3. Then, obviously, either N2 < N3 and an ampli-
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fier can be produced for signals of frequency v32,

or else N2 > NI and signals of frequency v21 can be

S. , amplified. The idea of the possibility of producing

a molecular generator using this excitation method

was first stated by Basov and Prokhorov [58). The

Fig. 8.7. Spin possibilities of constructing a three-level para-levels of para-

magnetic centers
of the working magnetic amplifier excited by the saturation
medium of a method were considered by Bloembergen [59]. The ad-
three-level am-
plifier. vantages of an amplifier of this type are the con-

tinuous operation and the possibility of using media with relatively

short relaxation times. These times should be sufficiently long to

permit practical saturation of the paramagnetic resonance.

Let us find the conditions for the excitation of a three-level

amplifier. Let Aik be the per second probability for the transition of

a particle from the level Ei to the level Ek under the influence of

the lattice vibrations (see §5.3), and let Pik be the probability of

transition between the same levels under the influence of the radio

frequency field, calculated in accordance with (1.3). If hvik<<kTc,

then the populations of' the individual levels will obey the equations

N, -f Nj + N= N,

"-aT 3 kT -

*dA 3 N N , 1  -', . N -N)

dN, N, + N h,)+) (8.45)
A- , (N h

A21,,-- N / +p(N 3 -N
dA(' AN

S kr, ) - ' N -N)

If it is assumed that P31>> P32  and P31>> A ik we obtain

N,N N-N,-W Allv,, - As.s, (8.46)N'~~ ~ ~~ --N '- '-- Tc As, + Ass

This quantity will be positive, and consequently negative absorption
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will take place at a frequency v32 if,

AI,, > Aay,,. (8.47)

If the opposite inequality holds true, then the negative absorption

will take place at frequency v21 . Substituting (8.46) in (8.21) and

using (8.25) and (8.27) we obtain the following condition for the

presence of amplification:

4 -.'qN < 1(21.13) '1 ( T?')s A,,'v -- .A a v (8 .48 )
3kT A v (/1j )v Aa,,+Ai > V.(

If the number of spin levels exceeds three, analagous calcula-

tions can be carried out, which, however, become quite cumbersome.

In the derivation of relation (8.47) we disregarded cross-

correlation. Equation (8.45) would have to be replaced by equation

(5.119), and we would then obtain in lieu of (8.47)

A,,,,> (A31 + w+ Wi-- 'VW1A (8.47a)

Since the probabilities of the cross-correlation transitions increase

rapidly with increasing paramagnetic center concentration, it becomes

understandable why appreciable increase in the center concentration

causes the amplifier to stop operating.

The linear amplifier theory which we have presented can be re-

garded as correct if the "illumination" power of frequency v31 is suf-

ficient to overcome the spin-lattice relaxation and produce saturation,

but is still not large enough to exceed the spin-spin interactions and

bring about coherent ordered spin systems. In other words, the average

time interval necessary for the spin reorientation under the influence

of the saturating rate of frequency field must exceed the spin-spin

relaxation time. If this condition is not satisfied, nonlinear effects

arise [60] which result in a paramagnetic amplifier of the parametric

type. Linearity can be readily maintained if the spin-lattice inter-
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actions are much weaker than the spin-spin ones. The latter condition

is usually satisfied in most media at low temperatures and not too low

1paramagnetic center concentrations.
It is interesting to note that the temperature Tm, which deter-

mines the minimum value of the noise figure, may turn out to be much

lower when the amplifier is excited by the saturation method than the

temperature Tc of the working medium. Indeed, if we assume kTm> hv32$

then it follows from (8.33), (8.34) and (8.46) that

T,=T A"+A,,. (8.49)

C .

If we can neglect A23 in this expression, we obtain Tm < < T c by suitable

choice of the energy intervals.

2. Choice of medium

The first and principal problem that must be solved in the pro-

duction of a paramagnetic amplifier is the choice of a medium with

suitable properties. The working medium of a three-level amplifier

must satisfy the following main requirements: a) the number of spin

levels of the paramagnetic particle should exceed 2, and consequently

particles with effective spin S' = 1/2 are eliminated; b) the split-

tings of the spin levels in the crystal field in the absence of an

external magnetic field (initial splittings) should be of order b31$

in order to attain saturation readily at the frequency of the auxili-

ary radiation; if the initial splittings are small, then the only

magnetic dipole transitions that differ noticeably from zero are

those between neighboring spin levels; c) the probabilities of the

spin-lattice relaxation transitions should be sufficiently small so

that saturation sets in at attainable elimination powers; d) the re-

lation between the probabilities of' the relaxation transitions should

satisfy for different spin level pairs the condition (8.47); e)
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the number of magnetically nonequivalent ions per elementary crystal

cell should be as small as possible; f) absence of hyperfine structure

, of' the energy levels is the most favorable; g) the width of' the indi-

vidual spin levels due to the spin-spin interactions should be suf-

ficiently small so that, first, the spin levels do not overlap and

second, that saturation can be reached sufficiently readily; it is

therefore necessary that the chosen medium be magnetically diluted in

an isomorphous diamagnetic substance; h) finally, there are require-

ments that do not concern the magnetic properties of the medium:

chemical stability, low dielectric losses, sufficient mechanical

strength.

It must be noted that of great importance to the operation of a

paramagnetic amplifier is the longitudinal relaxation mechanism. If

the latter is defined as the rate of energy transfer from the system

of effective lattice oscillators to the helium thermostat, then the

resonance saturation due to transitions between levels El and E3 may

influence the populations of other levels (see §5.4). Unfortunately,

the available experimental data are incomplete and scanty and conse-

quently the question of the nature of paramagnetic relaxation in dif-

ferent substances is still debatable. Bloembergen [61] states that the

very existence of three-level amplifiers at temperatures below 4.20K

indicates that longitudinal relaxation in the employed paramagnetic

crystals is not determined by the coupling between the effective

lattice oscillators and the helium thermostat. However, he admits the

possibility that the bottleneck of the energy transfer from the spin

system to the lattice are the phonon-phonon interactions. Strandberg

[62, 63], in an analysis of the results of experiments with three-

*-- level amplifiers, reached the conclusion that the phonon-phonon pro-

cesses play an appreciable role. On the basis of subsequent investi-
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gations Bloembergen [122] reached the conclusion that all the effects

observed by Strandberg could be attributed to cross-correlation.

The only ones among the various paramagnets capable of satisfying

the foregoing requirements are apparently crystals containing ions of

the intermediate groups. The most investigated among these are the

compounds of the iron group of elements. We know that in most crystals

the iron group ions have a surrounding of octahedral symmetry; these

are the compounds we shall consider primarily.

In this case ions with electron configuration d , d , d , d7 have

very short spin-lattice relaxation times (see §5.3). Therefore,

naturally, we eliminate from consideration the compounds of Ti3 + , V4+ ,

V3+ , Cr2+ and Co 2+ . The ions that remain suitable from this point of

view are V2+ , Cr3+ , Cr 2+ , Mn3+ , Mn2+, Fe3+ , Ni2+ and Cu2+ . Among these

ions, copper has a spin S = 1/2, so that its compounds are not suit-

able for three-level amplifiers; however, the presence of a hyperfine

structure in the paramagnetic resonance line of copper apparently

makes it possible to use its salts to produce an amplifier at fre-

quencies 108 - lO9 cps [64). Further, the ions of vanadium and man-

ganese are little suitable because they have a large nuclear spin

(V51 : I = 7/2, Mn55 : I = 5/2). We are thus left for our primary

choice ions of divalent and trivalent chromium, trivalent iron, and

divalent nickel.

We have seen in §3.9 that it is necessary to distinguish between

paramagnetic complexes with a small fraction of covalence and those

with strong covalent bonds. The only compounds with strong covalent

bonds suitable for our purposes are those containing Cr3+; atoms with

configuration de1 and de5 will have an effective spin S = 1/2. Atoms

with configuration de2 and dE4 have S = 1, but their initial spin

level splittings are apparently too large. The atom Cr3+ has a dE3 con-
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figuration, and is in an effective S state with spin S = 3/2. It is

analagous to the Fe3+ and Mn2+ ions in compounds with weak bond.

Let us dwell in somewhat greater detail on different compounds of

the iron group ions selected by us.

Cr2t S = 2. Salts of divalent chromium are chemically less stable

than all others. In addition, this ion in a cubic field has a double

lower orbital level; the orbital degeneracy is lifted by a weak field

of lower symmetry, and consequently we can expect the initial split-

tings of the spin levels in the crystalline field to be too large.

This is confirmed by the only substance investigated to date, CrSO4

• 5H20, for which the spin Hamiltonian constant is D = 2.24 cm- ,

which would require the use of a wave four millimeters long for illumi-

nation.

Cr" S = 3/2. Compounds of this ion have been well investigated;

they have relatively long sp'.n-lattice relaxation times; the zero

level splittings of many lie in a convenient region of standard micro-

wave frequencies. From among the compounds of this ion, the hexa-

cyanide of chromium and corundum doped with Cr3+ are already used as

working media for amplifiers.

Fe +. S = 5/2. The free ion is in the S state. The relaxation

times are of the same order as in Cr3+ . The initial splittings of the

spin levels are large in some cases. Fe3+ compounds may be of interest

for the construction of an amplifier without the use of a constant

magnetic field [65, 42] or with the use of weak magnetic fields, for

the Fe3+ ions have three spin levels even in the absence of a magnetic

field.

Ni2+. S = 1. At first glance Ni2+ is the most suitable for use in

working medium compounds, in view of the fact that this ion has only

three spin levels. However, an attempt at creating an amplifier using
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nickel fluorosilicate [68] was not successful because of the excessive-

ly short relaxation time T1 and owing to internal stresses in the

W crystal, which have led to an excessive broadening of the paramagnetic

resonance lines. There are many known paramagnetic salts of divalent

nickel the only investigated magnetic property of which is the static

susceptibility. It is possible that some of them, unlike nickel fluoro-

silicate, turn out to be suitable. We note that if the symmetry of the

crystalline field surrounding the Ni2+ ion is so low that the spin

Hamiltonian contains terms of the type E(S2 - S ), then the spin de-

generacy will be lifted even in the absence of an external magnetic

field. Such compounds of Ni2+ may possibly turn out to be suitable for

an amplifier without the use of a constant magnetic field (65].

So far we have considered octahedral paramagnetic complexes. An

analysis of the structure of' the energy levels of' the iron group ions

in a tetrahedral surrounding shows that for some reason or another

(short spin-lattice relaxation time, large hyperfine structure, etc.)

the only promising compounds of this type can be only the salts of di-

valent iron, which of course must be diluted by suitable diamagnets.

From among the group of rare earth elements, only compounds of

Gd3+ and Eu2+ ions in the S state can be used, and in the remaining

ions of this group the spin-lattice relaxation times are excessively

short. Eu2+ is less suitable because of its appreciable hyperfine

structure. The spin of Gd3+ is S = 7/2 and in the absence of an ex-

ternal magnetic field there are four spin levels, making compounds

of Gd3+ promising for the construction of an amplifier without a mag-

netic field.

The magnetic complexes of compounds of thepalladium and platinum

( group elements are characterized by a strong covalent bond. Therefore,

j in accordance with the considerations advanced with respect to com-
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pounds of the iron group, the only complexes suitable for our purpose

can be those with electron configuration ds3 , that is, complexes con-

ttaining trivalent molybdenum, trivalent tungsten, and pentavalent
ruthenium. Complexes containing Re4+ are not suitable since the nuclear
spin of Re185 or Re187 is 5/2.

Most elements of the actinide group are radioactive. The uranium

compounds have been little investigated. It is possible that some of

the compounds of trivalent and tetravalent uranium will be found suit-

able.

Concluding the review of the substances that offer promise as

being useful in three-level amplifiers, we note in additiou the cubic

lattice crystals of the type MgO, CaO, CaF 2, in which ions of Cr3+ ,

Fe3+ , Gd3+ , Mn2+, etc., are introduced. The paramagnetic resonance ab-

sorption lines observed in these cases are very narrow (in Cr 3+ , for

example, the line width is merely 3 oersted). It is possible that

these substances will find application in amplifiers at relatively

low frequencies.

3. Choice of orientation of constant magnetic field

The orientation of the constant magnetic field relative to the

crystal axes determines important characteristics of the working

medium of a three-level amplifier, such as the position of the spin

energy levels, the probabilities of transitions between them under

the influence of' the alternating magnetic field, and the probabilities

of transitions under the influence of the lattice vibrations. The de-

pendence of the probabilities of the relaxation transitions between

the different spin levels on the constant magnetic field has hardly

been investigated. The positions of the spin levels and the proba-

bilities of the magnetic dipole transitions between them can, on the

other hand, be calculated if we know the parameters of the spin
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Hamiltonian (see Chapter III).

In choosing the direction of the magnetic field it is important

to have not only suitable energy intervals, which give the required

values of the frequencies v3 2 (or v2l ) and v3 1 ; it is also important

to have the probabilities of the magnetic dipole transitions, P32

(or P21 ) and P3 1 (1.3), sufficiently large. If P32 (or P2 1 ) is small,

then the gain will be small; if P31 is small, a large elimination

power is necessary to obtain the saturation effect. Therefore, as al-

ready mentioned, the spin level splittings due to the application of

an external static magnetic field should not exceed greatly the

initial crystal splittings. If the external magnetic field is very

large, then the spin levels will be practically equidistant, and

transitions under the influence of the radio frequency field will be

possible in practice only between neighboring levels, and consequently

illumination will not be feasible.

In the case when S < 3/2 the spin Hamiltonian has a very simple

since the part in it kr representing the action of the crys-

talline field contains only quadratic terms in the components of the

spin vector S. If the field has trigonal or a tetragonal symmetry,

then Dkr = D[ - 1/3S(S + 1)]; the symmetry axis coincides here with

the Z direction. If the static magnetic field 0 1 Z, then the spin

Hamiltonian represents a diagonal matrix and consequently the selec-

tion rule AM = + 1 holds true for the magnetic dipole transitions.

The possibilities for choosing suitable transitions for obtaining the

required values of v32 (or v21 ) and v31 are clear from Fig. 1.3. If

the spin Hamiltonian contains also a rhombic term E(S - S)

1/2E( - + g2) then the latter, obviously, causes an overlap of the

states in which the quantum numbers of the spin projection on the Z

axis differ by +2, that is, states with M = -1, M = +1 in the case
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S = 1, states with M = -3/2, M = 1/2, M = -1/2, M = 3/2 in the case

with S = 3/2. The number of level pairs between which transitions

are allowed now increases.

We note that in the case of an even number of electrons, a rhombic

field lifts the spin degeneracy completely, so that for ions with S = 1

we have three definite spin levels even in the absence of a magnetic

field. As indicated, this opens up the possibility of using compounds

of these ions as working media for the amplifier without the use of a

magnetic field.

Assume now that the field H0 is perpendicular to the trigonal or

tetragonal axis of the crystal. If as before we choose H0 II Z, then

the term [g- _ 1/3S(S + 1)] becomes 1/2[g2 + g2] and causes overlap-

ing of states with AM = +2 even without a rhombic field.

In the case S = 5/2 (and S = 7/2) the form of the spin Hamiltonian

becomes appreciably more complicated, for it represents a fourth

(sixth) degree polynomial in the components of the spin vector S. The

position of the spin levels and the selection rules will depend es-

sentially on the relationships between the values of the different

spin Hamiltonian parameters.

Under certain orientations of the constant magnetic field, a

symmetrical energy splitting is possible, making it possible to cause

illumination at a single frequency to produce transitions between two

pairs of spin levels. The use of such a symmetrical version increases

the gain by several times.

We know that in the presence of initial crystalline splittings

of the spin levels the resonant absorption is possible not only when

the static and alternating magnetic fields are mutually perpendicular.

To find the optimal conditions of amplifier operation it is necessary

also t6 take into account the dependence of the absorbed power of
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radio frequency field on its orientation relative to the constant mag-

netic field and to the crystal axes.

InIn conclusion we note that amplifiers operating without an ex-

ternally applied magnetic field apparently assume great significance

[42]. Such amplifiers would have many advantages: 1) no electromagnet

is necessary; the difficulties involved in attaining high homogeneity

of the magnetic field, current stabilization, and large working space

are eliminated; 2) no single crystals are necessary; 3) all the ions

of the crystal cell are used; 4) superconductors can be used in the

construction of the microwave circuit; 5) the dimensions of the Dewar

are not limited to the gap between poles; 6) there is no broadening

due to the scatter of the angles between the crystal axes and the

magnetic field.

TABLE 8.1

Initial Splittings of Spin Levels in Substances

Containing Fe
3+ , Ni2+, and Gd3 +

1) tHoi 2 )cItemo h
3

aqub. ie pacmAemHI. exU'

peg+  RbFe(SOO), • 12H,O 0,043 0,002
NHFe(SO04), 12H110 6,065 0,014
KFe(SO,), •121H,O 0,043 0,025
FC[(CFICO)jCH1 0,28 0,14
BaTiOs 0,332 0,166
SrTiO, 0,023 0,044
(NH&CH,)Fe(S04)2 12H1,O 0,134 0,48
AISO, 0,38 0,63
AI,Bes(SiO,), 0,05 0,06
MgWO, 2,05 2,52

Nis+  (NH,),Ni(SO), . 6HO "1,5 0,97
(NH,)jNi(ScO,), 6H,O 091 1,64
TINI(SeO,), • 6H,O U 0,2
K,NI(SO), • 64.0 2,95 I,
NISO, • 7H,O 2,0 3,0

(d$ +  MgGds(NOs),, • 241180 0,0766 0,0479 0,0246
GdCI, • 7HO 0,0827 0,0504 0,0243
OdCd, 0,0087 0,00077 0,00065
Od(C,HSO,), .9HO 0,131 0,085 0,0466
Od,(SO4),. 8HO 0,291 0,055 0,908

1) Ion; 2) substance; 3) initial splittings, cmf- I .

Table 8.1 gives the initial splittings of the spin levels of
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paramagnetic centers for substances that can be used in amplifiers

without field as of now.

4. Amplifier with gadolinium ethyl sulfate

The first three-level paramagnetic amplifier [66, 67] was con-

structed with diamagnetic lanthanum ethyl sulfate containing 0.5%

gadolinium and 0.2% cerium. The role of the active paramagnetic cen-

ters was played by the Gd3+ ions. A static magnetic field of intensity

1800 oersted was placed perpendicular to the symmetry axis of the

crystal. Of the eight spin levels of Gd3+ , which we shall designate in

accordance with the value of the magnetic quantum number in a strong

magnetic field, the following three neighboring ones were used: M =

= -5/2, -3/2 and -1/2. The illumination frequency was v(-1/2, -5/2) =

= 11,500 megacycles, the signal frequency was v(-3/2, -5/2) = 6000

megacycles, the magnetic field of signal and the magnetic field of the

illumination were perpendicular and parallel to the static field HO,

respectively. The frequencies v(-1/2, -3/2) and v(-3/2, -5/2) were so

close to each other that in order to invert the populations of the

levels M = -5/2 and M = -3/2 it is necessary to have, in accordance

with (8.43) A(-1/2, -3/2)> >A(-3/2, -5/2). This requirement can be

readily satisfied by using a small admixture of Ce. The described ex-

perimental conditions are such that the interval between the spin

levels of CeS+ is precisely equal to the interval (-1/2, -3/2) of the

Id3+ ion. The spin-lattice relaxation time of Id3 + is about 10 sec

at helium temperatures, and the relaxation time of Ge3+ is several

orders of magnitude shorter. Because of the resonant spin interaction

* 3+of gadolinium and cerium, the spin levels of Ce are rapidly ex-

cited as a result of the transitions M = -1/2 -* M = -3/2 of the Gd3 +

3ion. The excited Ce3+ ions transfer in turn their energy to the lat-

tice vibrations very rapidly.
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The illumination was effected by means of a radio-frequency field

of 88 mW power. The resonant cavity had a - 6000. The gain reached

an order of 20 db at a band width of about 105cps. The effective noise

temperature of the entire installation, including the circulator and

the control unit, was approximately 150 K, but it can be greatly re-

duced in many ways.

Owing to the chemical instability of gadolinium ethyl sulfate,

it is hardly likely that it will assume a practical significance as a

working medium for paramagnetic amplifiers.

5. Amplifier with chromium hexacyanide

The exceedingly long longitudinal relaxation time, on the order

of 0.2 sec at 1.250 K, has attracted attention to chromium hexacyanide

as a working medium for a paramagnetic amplifier [68]. The substance

used in practice was the diamagnetic salt K3Co(CN)6, which contained

0.5% of chromium. In the complex Cr(CN)6 there is a very strong co-

valent bond (see §3.8), owing to which the electron configuration

de3 gives a zero resultant orbital momenum and a iesultant spin

S = 3/2. The upper three of the four spin levels were used: M = 3/2,

1/2, -1/2, the signal frequency was v(3/2, 1/2) = 2800 megacycles,

the illumination frequency was v(3/2, -1/2) megacycles. In this case

there was no need to take any measures to satisfy the condition

(8.47 ), since v(1/2, -1/2)>>v(3/2, 1/2). The central part of the am-

plifier, a resonant cavity, had to be specially constructed in order

to be able to excite simultaneously oscillations at both the signal

and illumination frequencies.

Figure 8.8 shows a block diagram of the installation, with the

aid of which a gain of 37 db was obtained with a band width of 2.5

-  104 cps. It was possible to obtain saturation with 1 milliwatt of

power. No change was noticed in the gain as the signal power was
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Fig. 8.8. Block diagram of microwave amplifier
installation [68].
1) Generator 2800 megacycles (75 my); 2) vari-
able attenuator, 50 db maximum; 3) matching
load; 4) generator 9400 megacycles (50 my);
53 crystal modulator; 6) directional coupler;
7 bolometer, 8) power meter; 9) amplified in-
put signal; 10) generator 100 kcs; 11) ferrite
circulator; 12) saturated power; 13) direction-
al coupler, 30 db; 14) low pass filter (micro-
wave band; 15) spectrum analyzer; 16) variable
attenuator; 17) output of amplifier; 18) to
vacuum pump; 19) thermostat with liquid nitro-
gen; 20) thermostat with liquid helium; 21) de-
tector; 22) cathode ray oscilloscope; 23) mag-
net pole piece; 24) resonant cavity with work-
ing medium.

increased from I0 -11 to lO- l O watt; a further increase in the power

resulted in a decrease in the gain and an increase in the band width.

It was shown experimentally that the relation g B = const (8.31)

holds true with great accuracy if the volume of the medium and the

configuration of the resonant cavity remain unchanged. It was found

in this case that gaB = 1.8 megacycles while theoretical calculations

gave a close value of about 2.6 megacycles.

Chromium hexacyanide was used [69] also to produce an amplifier

at a frequency of 1373 megacycles (the frequency of the interstellar

hydrogen line). The illumination was at a frequency of 8000 megacycles.
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With the aid of 9 milliwatts of illumination, the apparatus turned

into a generator. Chromium hexacyanide was also used by others to

I build an amplifier [62, 70].

6. Ruby amplifier

Corundum with chromium added (ruby) is used to produce amplifiers

for different frequencies [71, 72]. Ruby has the following favorable

distinguishing properties: a) the initial crystalline splitting is of

the order of the most widely used frequencies in practice; b) rela-

tively long time of longitudinal relaxation, 0.1 sec at 4.20 K; c) the

crystal cell contains only 1 Cr3+ ion or the A13+ ion which is iso-

morphous to it; d) low dielectric losses; e) high mechanical strength

and chemical stability; f) good heat conductivity.

Makov et al. [71] constructed an amplifier for a signal frequency

v(-1/2, 1/2) = 9300 megacycles; the illumination was at v(-3/2, 1/2) =

= 24,000 megacycles; the static magnetic field of intensity 4200 cer-

sted was at an angle 540 44' to the trigonal axis of the crystal. The

chromium concentration in the specimen employed was 0.1%. The illumina-

tion was with the aid of a klystron with 120 milliwatts of power. The

gain reached 20 db.

Prokhorov et al. [72] produced an amplifier at a frequency

v(-1/2, 1/2) 3000 megacycles with an illumination frequency

v(3/2, -1/2) = 15,000 megacycles. When the temperature was reduced to

20K, the system became self excited and operated as a generator.

A recent communication [117] reports on a paramagnetic amplifier

using a ruby with traveling wave (that is, of the wave guide type),

having the following parameters: gain approximately 25 db, band width

approximately 23 megacycles, noise temperature approximately 10OK,

4" working frequency tunable within several per cent near an operating

point of approximately 6000 megacycles. Practical realization of such
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an amplifier became possible by using slow-wave systems.

In the case of ruby, the dependence of the spin level splitting

on the field H0 and on its inclination to the optical axis of the

crystal were plotted [118] and investigations were made of the influ-

ence of the admixture of Co2+ ions and other ions on the probability

of the relaxation transitions [119].

7. Amplifier using corundum with Fe3+ impurity

Kornienko and Prokhorov (34] constructed an amplifier for a fre-

quency of about 10,000 megacycles with an illumination frequency of

about 25,000 megacycles, using as the working medium corundum with

iron ions added. The optical axis of the crystal made a small angle

with the direction of the constant magnetic field. We shall denote the

spin levels by the magnetic quantum numbers that can be ascribed to

them in a strong field H0 . The levels with M = -3/2, -1/2 were used

for the amplification and the levels M = - 5/2, -1/2 for illumination.

We note that since the spin Hamiltonian of the Fe3+ ions contains

terms with not only axial but also cubic symmetry, transitions between

any pair of the selected levels are allowed.

§8.6. Optical Methods of Investigating Paramagnetic Resonance

Many interesting results were obtained in recent years with the

aid of experiments consisting of applying simultaneously to gases

electromagnetic radiations at two different frequencies in the optical

and in the radio bands. Investigations of this type were carried out

both with atoms (or molecules) whose ground state is a singlet one

and consequently nonmagnetic, and with atoms which are paramagnetic

in the ground state. In the former case the radio frequency resonance

occurs in the optically excited atoms, and in the latter it occurs on

atoms in the ground state.
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1. Resonance on optically excited atoms

The idea of paramagnetic resonance experiments on optically ex-

cited atoms was advanced in 1949 [73, 74] and consists of the follow-

ing. Let us consider an assembly of diamagnetic atoms placed in a

static magnetic field H0 and subject to the action of polarized light

of resonant frequency. The excitation of the atoms will obviously be

selective. If the atoms are paramagnetic in the excited state, then

only some of the Zeeman sublevels will be occupied. Consequently, the

radiation produced upon the excitation of the atoms will be polarized.

The radio frequency field, producing transitions between the Zeeman

sublevels, changes the character of the polarization of the emitted

light. Thus, measurements of the polarization of the emitted light

make it possible to establish the occurrence of magnetic resonance.

M
- + The investigation method which we

6 - -0
S-, have described was first experimentally

realized by Brossel and Bitter [75], who

I applied it to even isotopes of mercury.

- Using linearly polarized light, they ex-
'S 0  0 cited the 2537 angstrom ultraviolet reso-

Fig. 8.9. Scheme of mag- nance line63p
netic resonance on op- nanc lin6( l). The field H0 was
tically excited mercury applied parallel to the electric vector of
atoms.

the light wave. In this case, as is well

known [76], only the Zeeman sublevel M = 0 is excited. The radiation

therefore contains only the 7T components. Then an oscillating magnetic

field of frequency v = 2.9625 * 1010 cps was applied perpendicular to

the field HO . By varying the intensity of HO, the resonance condition

hv = gPoH*0 was attained, where g = 1.5 is the Lande factor for the

state 3P1 . Owing to the transitions AM = +1, produced by the radio

frequency field, circularly polarized components appear in the optical
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radiation. The dashed lines show the transi-

tions arising as a result of the radio fre-

quency field. In Fig. 8.10 curve I gives the

ff dependence of the intensity of the a compo-

nents on the field HO. The maximum intensity

corresponds to a field intensity H*0 satisfy-

ing the resonance condition.

The method described makes it also pos-
Fig. 8.10. Stark
effect on the 2537 sible to investigate the Stark effect with
angstrom mercury
resonance line. great accuracy. Blamont (77] produced parallel
I) Plot of the de-
pendence of the a to H0 an electric field E = 40 kv/cm. In the
components of radia-
tion produced under absence of the field E, the energy intervals
magnetic resonance
conditions on the 0-. 1 and -- 1-0 are equal, and therefore
field HO; II) plot of

the same dependence only the resonance line I appears (Fig. 8.10).
upon superposition of The levels M = 0 and M = + 1 shift different-
an electric field E =)40 ky/cm.
SKlooersteds. ly in the electric field E; this causes the

appearance of two resonance lines (curve II

in Fig. 8.10). Within the limits of the measurement accuracy, it was

shown that the effect is quadratic. The interval between the resonance

peaks is

= 2KE, (8.50)

where the Stark constant is K = (2.13 + 0.05) * 105 cps/kv ' cm-- .

2. Magnetic resonance line shape

If the gas is highly rarefied so that N0 < 1O12 then the width of

the optical resonance line Av = g3AH is determined by the lifetime tO

of the excited state. According to the uncertainty relation

t h (8.51)

If the width AH is estimated from curve I of Fig. 8.10, we obtain for
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the lifetime at the 63pI level t0 = 1.19 ' 10-
7 sec, which is in good

agreement with the pure optical data. The double resonance method was

4 used [78] also to determine the much shorter lifetime at the excited

level 7 3S.

It is easy to show [75] that the shape of the resonance line is

given by the following expression:

= ( M',t)e edt, (8.52)

where y is the relative intensity of the line and P(M, M', t) is the

probability that a transition M-- M' will occur within a time t. This

probability is calculated by means of the well known Majorana formula

[79]. For the line 63p -b6 1so we obtain in this manner

T "l ( +l+l) (8.53)

Here w = 4'7(v - v0 ). Under resonance conditions c = 0 and consequently

YPC = , I -" (8.54)

If the amplitude of the alternating field is small, then the width of

the resonance curve can be determined from the following approximate

formula:

(AV)'= [ + 1,45 (THto)']. (8.55)

If the Zeeman levels are shifted by the Stark effect, then formulas

(8.53) - (8.55) should, of course, be modified [80].

3. Mu-.tiple coherent photon scattering

Blamont [77] in an investigation of the dependence of the line

width ya(H) on the vapor density for the even isotopes of mercury,

obtained the following unexpected result: an increase in density is

accompanied by noticeable narrowing down of the resonance line. Thus,
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for example, when the number of atoms per cubic centimeter is increased

from l0ll to 101 3 , the width is reduced to one-third. With increasing

b vapor density, the number of collisions between atoms increases. Under

the conditions of this experiment it is evident that this cause of

line broadening is insignificant. Detailed investigations undertaken

by Brossel et al. [81] have shown that the narrowing down depends on

the dimensions of the resonant cavity; it is determined by the concen-

tration of the investigated isotope only and is not at all connected

with the amount of other isotopes. All these facts have been ex-

plained by the circumstance that under the conditions of these ex-

periments the multiple coherent scattering of the photons plays a

major role [82].

The process of multiple photon scattering can be visualized in

the following fashion: The photon is absorbed by atom A, which is de-

excited after a time interval to; the photon is then absorbed by an-

other atom B, etc. It is important that the scattering be coherent;

then the resonance line width will be determined not by the lifetime

tO but by the "duration of coherence" tk > tO . Theoretical analysis

of multiple coherence scattering was carried out long ago by Weisskopf

[83].

It should be noted that when N 0 > 1014, collisions between atoms

begin to exert a noticeable influence on the line width.

4. Investigation of hyperfine splittings

So far we have assumed that the investigated energy levels do not

have hyperfine structure. If the nuclear spin is not equal to zero,

then the double resonance method makes it possible to measure with

great accuracy the hyperfine splittings. These measurements are par-

( ticularly valuable when J = 0 or 1/2 in the ground state, and conse-

quently, only a study of the excited states makes it possible to
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determine the quadrupolemoments of the nuclei. This method was used

for an analysis of the hyperfine structure of the 3Plevel of the

zinc atom (84] and the 2P3/2 of the following alkaline metal atoms:

sodium [85], potassium [86], rubidium [87] and cesium [88]. This

method was used to determine the quadruple moments of' the nuclei, for

which the following values were obtained: Na23 , Q = (0.11 + 0.01)

10 - 2 4 cm 2; K39 , Q = (0.11 + 0.035) 10 - 2 4 cm2 ; Rb8 5' Q =

(0.29 + 0.02) . 10 - 2 4 cm ; Rb8 7 , Q (0.14 + 0.01) 10- 2 4 cm2

C133 1024 2
, Q = (-0.003 + 0.002) " cm . Related to this series of

investigations is the work done on the Stark effect for the levels of

the odd mercury isotopes, which, as is well known, have a hyperfine

structure [89].

Rabi [90] supplemented his original beam method by optical ex-

citation of the atoms. Measurements carried out in this way have

yielded for the quadrupole moments of alkali element nuclei values

that agreed with those mentioned above.

5. Orientation of atoms in the ground state

We proceed from a study of magnetic resonance on optically ex-

cited atoms to the effect on the ground atomic levels. We first stop

to discuss the method of optical pumping, which makes it possible to

orient atoms in the ground state. We shall illustrate the idea of the

method using the D2(2P3/2 4--o2 2S1/ 2 ) lines of sodium. For simplicity

we first neglect the hyperfine structure of the levels. Let the sodium

atoms be in a static magnetic field H0 . The scheme of' the Zeeman

splittings arising thereby and of the possible electric dipole transi-

tions is shown in Fig. 8.11. Let us assume that a circularly polarized

light beam propagates along the field H0 and gives rise to the a+

S transitions indicated in Fig. 8.11 by the solid arrows. Upon de-

excitation of the so excited atoms, the greater part of these atoms
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-Y -will go over into the state M = +1/2.

After multiple repetition of this pro-
Id I

B \ , I- cess, the level M = -1/2 becomes empty,

', and all the atoms gather at level M =

= +1/2. Thus, as a result or the optical

Fig. 8.11. Optical pumping pumping all the atoms will be oriented
by exciting with polarized

light the a+ transition against the field direction, and magneti-2p 2l/
P3/2 4- - Sl/ 2 in sodium zation to saturation will set in. Ac-

atoms.
tually the orientation of the atoms will

never be complete, principally as a result of collisions with the walls

of the vessel. Experiments show that it will nevertheless be appreci-

able. The extent to which the atoms are oriented can be evaluated from

the character of the polarization of the radiation emitted by the

optically excited atoms. In our example of the D2 sodium line, the

radiation will contain only the a component if 100% atomic orienta-

tion is attained.

The idea of orienting atoms by optical pumping was advanced by

Kastler [91). The first experiments were carried out with atomic

sodium beams [92, 93]. They were successfully repeated with sodium

vapor, which greatly simplified the experimental technique [94]. In

addition to the sodium atoms [95], other alkaline metals were later

studied: K [96], Rb [97] and Cs [98]. Various modifications of the

optical pumping method were proposed and realized [99, 100]. It was

shown, in particular, that under the influence of natural light

propagating along a magnetic field, the atoms become "aligned."*

6. Orientation of nuclei

If the nuclei have a nonzero spin, then the interaction between

the electron and nuclear moments causes the orientation of the atoms

to be accompanied by orientation of the nuclei. Attempts were made
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to determine this orientation from anisotropy of the y-radiation

on the nuclei of alkali-metal atoms (102]. The result turned out to

. be negative, apparently because of adsorption of atoms on the vessel

walls.

If the ground state is diamagnetic, then the method of optical

pumping makes it possible to obtain a pure nuclear orientation. The

first experiments with odd mercury isotopes were not successful be-

cause the light intensity was not sufficient [1031. Positive results

were obtained [104] with mercury enriched to 90% with the 2 0 1Hg iso-

tope. The optical excitation was produced by natural light propagating

in the direction of the magnetic field. Thus, alignment of the nuclei

was obtained in these experiments.

7. Magnetic resonance on atoms in the ground state

Optical pumping causes the paramagnetic resonance absorption to

increase appreciably. Usually, however, the detection of magnetic

resonance is carried out by optical methods based on the depolariza-

tion of the resonant (optical) radiation resulting from transitions

between the Zeeman levels under the influence of the radio frequency

field. The first experiments, carried out with sodium atoms [105],

have shown that in addition to the resonance peaks corresponding

to the transitions AM = +1, other peaks appear if the intensity of the

radio frequency field is sufficient and these are connected with the

transitions AM = +2, +3,... The additional peaks appear as a result of

absorption of 2, 3,... radio frequency quanta. A theoretical analysis

has shown [106] that the intensity of the n-th order resonance is

proportional to (H/H0) 2n.

Winter [107] has predicted the possibility of resonance on mul-

tiple frequencies even when the atoms contain only two magnetic sub-

levels each. For this effect to appear it is necessary that the
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radio frequency field not be polarized circularly, but that it con-

tain photons of differing polarizations. The effect was observed ex-

perimentally on sodium atoms [108].

8. Effect of extraneous gases

The double resonance method which we have described is very con-

venient for the study of the influence of extraneous gases on the

orientation of the investigated atoms. If the atoms are oriented and

are an excited state, then it is well known that collisions with the

molecules of the extraneous gas will cause depolarization of the

resonant radiation [76], since the collisions mix up the states with

different values of M.

Oriented atoms in the ground states are affected by the extrane-

ous gases in two ways:

a) First, the extraneous gases produce disorientation, as in the

case of excited atoms;

b) second, they play the role of a buffer preventing the atoms

from colliding with the vessel walls.

If the density of the extraneous gases is relatively low, the

buffer action plays the principal role and brings about an increase

in the resonant absorption intensity by a factor 10-15 [99, 109].

If in the absence of impurities the straight line motion of the atoms

is interrupted predominantly because of collisions with the vessel

walls, then in the presence of extraneous gases the trajectory of

the atoms becomes zigzaglike and therefore the orienting action of

the incident light becomes more prolonged. This effect increases with

increasing mass of the extraneous gas molecules. Atoms in the 2S112

state are less sensitive to collisions. Dicke [110] has predicted that

the collisions should give rise not only to an increase in the in-

tensity but also to a narrowing of the resonance line. This was soon
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observed in experiment [111].

In conclusion, let us dwell on several prospects in the develop-

S ment of the method of double optical-radio frequency resonance.

a) The measurement accuracy of ordinary optical spectroscopy is

limited by the Doppler broadening of the lines. The double resonance

method which we described is free of this shortcoming, making it

valuable for measurement purposes.

b) Investigations made on vapors in the presence of extraneous

gases yield valuable experimental material for the theory of collisions

of oriented atoms. The weak influence of the collisions on the orienta-

tion of the atoms can be used to orient radioactive nuclei and to

obtain polarized electrons [112].

c) In the experiments which we described, optical methods play a

double role: 1) they are used for selective excitation of the atoms;

2) they are used to detect radio frequency resonance. Interesting re-

sults can be obtained by combining optical methods with other methods

for either selective excitation of atoms or detection of' magnetic

resonance.

Let us point out some possible combinations which have yielded

positive results:

1) Selective excitation of atoms can be carried out by the

Frank and Hertz method of inelastic electron collisions, while detec-

tion of magnetic resonance can be carried out by the optical method;

Dehmelt [1131 investigated in this fashion magnetic resonance on the

metastable mercury state 63P2, and Pebay-Peyroula [1141 made measure-

ments for the 63 P1 level;

2) we have already mentioned that Rabi (90] combined optical

£ excitation and resonance detection by the Stern and Gerlach beam

method;
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3) selective excitation can be carried out by optical means, and

detection by ordinary methods of paramagnetic resonance [115].

Id) Great interest attaches to the use of optical pumping in

solids. The suitability of the substance for this purpose is deter-

mined by the following two conditions: 1) the spin-lattice relaxation

time should be longer than the duration of one cycle of optical pump-

ing; 2) optical transitions should exist in a practically convenient

frequency region. A preliminary study [116] has shown that these

conditions can be satisfied above all by salts of ions in the S state.

Apparently the most suitable ones are salts of divalent europium.

We note that the changeover to solids is particularly important

for experiments with oriented nuclei, since the use of gases is in-

convenient, owing to the disorienting action of adsorption on the

vessel walls.

3) It is possible to obtain by the optical pumping method a

higher population for the upper Zeeman levels as compared with the

lower ones. It follows therefore that this effect can be used to

construct a low noise amplifier or generator [112]. The need for

using rarefied gases so as to avoid multiple incoherent scattering

of the photons greatly limits the practical applications of such de-

vices. They may, however, turn out to be quite valuable as frequency

standards.

REFERENCES TO CHAPTER 8

1. Overhauser A.W., Phys. Rev. 92, 411, 1953.

2. Van Vleck J.H., Nuovo cimento 6, suppl., 1081, 1957.

3. Overhauser A.W., Phys. Rev. 89, 689, 1953.

4. Brovetto P., Cini G., Nuovo cimento 11, 618, 1954.

5. Brovetto P., Ferroni S., Nuovo cimento 12, 90, 1954.

460



6. Kittel C., Phys. Rev. 95, 589, 1954.

7. Klein M.J., Phys. Rev. 98, 1736, 1955.

8. Slichter C.P., Phys. Rev. 99, 1822, 1955.

9. Barker W.A., Mencher A., Phys. Rev. 102, 1023, 1956.

10. Solomon I., Phys. Rev. 99, 559, 1955.

11. Little W.A, Proc. Phys. Soc. B70, 785, 1957.

12. Azbel' M.Ya., Gerasimenko V.I., Lifshits I.M., ZhETF [J.X.

Theor. Phys.], 31, 357, 1956; 32, 1212, 1957.

13. Kaplan J.I., Phys. Rev. 99, 1322, 1955.

14. Carver T.R., Slichter C.P., Phys. Rev. 92, 212, 1953.

15. Carver T.R., Slichter C.P., Phys. Rev. 102, 975, 1956;

Bekeshko, N.A., Kondorskiy, Ye.I., ZhETF, 32, 611, 1957.

16. Abragam A., Combrisson J., Solomon I., Compt. Rend. 245, 157,

1957; 246, 1035, 1958.

17. Honig A., Phys. Rev. 96, 234, 1954.

18. Kaplan J.I., Phys. Rev. 96, 238, 1954.

19. Honig A., Combrisson J., Phys. Rev. 102, 917, 1956.

20. Bloch F., Phys. Rev. 93, 944, 1954.

21. Overhauser A., Phys. Rev. 94, 768, 1954.

22. Korringa J., Phys. Rev. 94, 1388, 1954.

23. Abragam A., Phys. Rev. 98, 1729, 1955.

24. Valiyev. K.A., Uch. Zap. KGU [Scientific Reports Kiev State

University], 117, 145, 1957; FMM [Physics of Metals and Metal-

ography], 6, 193, 1958.

25. Bashkirov Sh. Sh., Uch. Zap. KGU, 117, 154, 1957.

26. Bashkirov Sh. Sh., Valiyev K.A., ZhETF, 35, 678, 1958.

27. Khutsishvili G.R., ZhETF, 34, 63, 1958.

28. Beljers H.G., van der Kint I., van Wieringen J.S., Phys. Rev.

95, 1683, 1954.

- 461 -



29. Allais E., Compt. Rend. (Proceedings], 246, 2123, 1958.

30. Landesman A., Compt. Rend. 246, 1538, 1958.

1 31. Motchane J.L., Erb E., Uebersfeld J., Compt. Rend. 246, 1833,

2121, 1958.

32. Feher G., Phys. Rev. 103, 500, 1956.

33. Feher G., Gere E.A., Phys. Rev. 103, 501, 1956.

34. Korniyenko L.S., Prokhorov A.M., ZhETF, 36, 919, 1959.

35. Jeffries C.D., Phys. Rev. 106, 164, 1957.

36. Abraham M., Kedzie R.W., Jeffries C.D., Phys. Rev. 106, 165, 1957.

37. Steenberg N.R., Proc. Phys. Soc. A65, 791, 1952.

38. Abragam A., Proctor W.G., Compt. Rend. 246, 2253, 1958.

39. Weber J., Trans. Inst. Radio Engin. Prof. Group on Electron

Devices, PGED-3, June 1953.

40. Basov N.G., Prokhorov A.M., ZhETF, 27, 431, 1954; DAN SSSR

(Proc. Acad. Skiy. USSR], 101, 47, 1954; Disc. Faraday Soc. 19,

99, 1955; UFN (Progress in the Physical Sciences], 57, 485,

1955; ZhETF, 30, 560, 1956.

41. Gordon J.P., Zeiger H.J., Townes C.H., Phys. Rev. 95, 282, 1954;

99, 1253, 1955.

42. Bogle S.S., Symmons H.F., Proc. Phys. Soc. 73, 531, 1959; Austr.

J. Phys. 12, 1, 1959.

43. Shimoda K,, Takahasi H., Townes C.H., J. Phys. Soc. Japan, 12,

686, 1957.

44. Pound R.V., Ann. Phys. 1, 24, 1957.

45. Strandberg M.W.P., Phys. Rev. 106, 617, 1957; 107, 1483, 1957.

46. Weber J., Phys. Rev. 108, 537, 1957.

47. Landau L., Lifshits Ye., Kvantovaya mekhanika (Quantum mechanics],

File. 1, Moscow, Gostekhizdat (State Unified Publishing House

j . for Scientific and Technical Literature], 1948.

-462-



48. Purcell E.M., Pound R.V., Phys. Rev. 81, 279, 1951.

49. Bloch F., Phys. Rev. 70, 460, 1946.

50. Endryu E., Yadernyy magnitnyy rezonans (Nuclear Magnetic Reso-

nance], IL [Foreign Literature Press], Moscow, 1957, page 150.

51. Loesche A., Kerninduktion [Nuclear Induction], VEB [People's

Own Publishers], Berlin, 1957, 62.

52. Rabil, Ramsey N.F., Schwinger J., Rev. Mod. Phys. 26, 167, 1954.

53. Feher G., Scovil H.E.D., Phys. Rev. 105, 760, 1957.

54. Combrisson J., Honig A., Townes C.H., Compt. Rend. 242, 2451,

1956.

55. Feher G., Gordon J.P., Buehler E., Gere A., Thurnmond C.D.,

Phys. Rev. 109, 221, 1958.

56. Chester, P.F., Wagner P.E., Castle J.G., Jr., Phys. Rev. 110,

281, 1958.

57. Bolef D.I., Chester P.F., IRE Trans. Microw. Theory a. Techn.

47, 1958.

58. Basov N.G., Prokhorov A.M., ZhETF, 28, 249, 1955.

59. Bloembergen N., Phys. Rev. 104, 324, 1956.

60. Javan A., Phys. Rev. 107, 1579, 1957; Clogston A.M., J. Phys.

Chem. Solids 4, 271, 1958; Prokhorov, A.M., URSI Meeting, Boulder,

Colo., IX, 1957.

61. Bloembergen N., Phys. Rev. 109, 2209, 1958.

62. Strandberg M.W.P., Davis C.F., Faughman B.W., Kyhl R.L., Wolga

G.J., Phys. Rev. 109, 1988, 1958.

63. Strandberg M.W.P , Phys. Rev. 110, 65, 1958.

64. Bashkirov Sh.Sh., Valiyev K.A., ZhETF, 35, 302, 1958.

65. Bowers K.D., Mims W.B., Conference Electronic Tube Research,

Berkeley, Calif., VI, 1957.

66. Scovil H.E.D., Feher G., Seidel H., Phys Rev. 105, 762, 1957.

-463-



67. Scovil H.E.D., Trans. Inst. Radio Engin. Prof. Group on Microwave

Theory and Techniques 6, 29, 1958.

68. McWhorter A.L., Meyer J.M., Phys. Rev. 109, 312, 1958.

69. Artman J.O., Bloembergen N., Shapiro S., Phys. Rev. 109, 1392,

1958.

70. Autler S.H., McAvoy N., Phys. Rev. 110, 280, 1958.

71. Makhov G., Kikuchi C., Lambe J., Terhune R.W., Phys. Rev. 109,

1399, 1958.

72. Zverev G.M., Korniyenko L.S., Manenkov A.A., Prokhorov A.M.,

ZhETF, 34, 1660, 1958.

73. Brossel J., Kasler A., Compt. Rend. 229, 1213, 1949.

74. Pryce F., Phys. Rev. 77, 136, 1950.

75. Brossel J., Bitter F., Phys. Rev. 86, 311, 1952; Brossel J.,

Ann. Phys. 7, 622, 1952.

76. Mitchell A., Zemanskiy M., Rezonan3noye izlucheniye i vozbuzh-

dennyye atomy [Resonance radiation and excitation of atoms],

1937, Chapter 5.

77. Blamont J.E., These (Paris, 1956); Blamont J., Brossel J.,

Compt. Rend. 238, 1487, 1954; Arch des. Sci. Geneve 9, fasc.

special, 152, 1956; 243, 2038, 1956.

78. Brossel J., Julienne C., Compt. Rend. 242, 2127, 1956.

79. Majorana J.E., Nuovo cimento 9, 43, 1932.

80. Blamont J., Winter J., Compt. Rend. 244, 332, 1957.

81. Guichon M., Blamont J. E. Brossel J., J. Phys. Rad. 18, 99,

1957; Boutron F., Brossel J., Compt. Rend. 245, 2250, 1957;

Barrat J., Brossel J., Compt. Rend. 246, 2744, 1958.

82. Rollet N., Brossel J., Kastler A., Compt. Rend. 242, 240, 1956.

83. Weisskopf V., Ann. Phys. 9, 23, 1931.
46

- 464 -



84. Bockmann K., Kruger H., Recknagel E., Nuovo cimento 6, suppl.

ser. X, 1155, 1957.

85. Sagalyn P.L., Phys. Rev. 94, 885, 1954.

86. Ritter G.J., Series G.W., Proc. Phys. Soc. A68, 450, 1955;

Proc. Roy. Soc. A238, 473, 1957; Series G.W., Phys. Rev. 105,

1128, 1957.

87. Meyer-Berkhout U., Zt. phys. [J. Phys.], 141, 185, 1955.

88. Althoff K.H., Z. Phys. 141, 33, 1955.

89. Blamont J.E., Brossel J., Compt. Rend. 243, 2038, 1956.

90. Perl M.L., Rabi I.I., Senitzky B., Phys. Rev. 98, 611, 1955; 103,

315, 1956; 104, 553, 1956.

91. Kastler A., J. Phys. Rad. 11, 255, 1950; Physica 17, 191, 1951.

92. Brossel J., Kastler A., Winter J., J. Phys. Rad. 13, 668, 1952.

93. Hawkins W.B., Dicke R.H., Phys. Rev. 91, 1008, 1953; 98, 478,

1956.

94. Barrat J., Brossel J., Kastler A., Compt. Rend. 239, 1196, 1954.

95. Kastler A., J. Opt. Soc. Amer. 47, 460, 1957.

96. Arditi M., Carver T.R., Phys. Rev. 109, 1012, 1958.

97. Skalinski T., Compt. Rend. 245, 1908, 1957.

98. Diamand F., Legendre J.M., Skalinski T., Compt. Rend. 246, 90,

1958.

99. Brossel J., Margerie J., Kastler A.J.,Compt. Rend. 241, 865, 1955.

100. Dehmelt H.G., Phys. Rev. 105, 1487, 1957; Bell W.E., Bloom A.L.,

Phys. Rev. 107, 1559, 1957; 109, 219, 1958; Franzen W., Emslie

A.G., Phys Rev. 108, 1453, 1957.

101. Margerie J., Brossel J., Kastler A., Compt. Rend. 241, 474, 1955;

Hawkins W.B., Dicke R.H., Phys. Rev., 91, 1008, 1953; Hawkins

W.B., Phys. Rev. 98, 478, 1955.

102. Brossel J., Mosser J.L., Winter J., J. Phys. Rad. 16, 814, 1955.

- 465-



103. Bitter F., Brossel J., Phys. Rev. 85, 1051, 1952; Bitter F.,

Lacey R.F., Richter B., Rev. Mod. Phys. 25, 174, 1953.

104. Cagnac B., Brossel J., Kastler A., Compt. Rend. 246, 1827, 1958.

105. Brossel J., Cagnac B., Kastler A., Compt. Rend. 237, 984, 1953;

J. Phys. Rad. 15, 6, 1954.

106. Besset C., Horowitz J., Messiah A. Winter J., J. Phys. Rad. 15,

251, 1954; Salwen H., Phys. Rev. 99, 1274, 1955; Hack M. N.,

Phys. Rev. 104, 84, 1956.

107. Winter, J., Compt. Rend. 241, 375, 600, 1955.

108. Margerie J., Brossel J., Compt. Rend. 241, 373, 566, 1955;

Winter J., Brossel J., Arch. Sci. Geneve 9, fasc. spec., 148,

1956.

109. Bender P.L., Thesis, Princeton University, 1956; Cohen-TannoudJi

C., Brossel J., Kastler A., Compt. Rend. 244, 1027; 1957;

Hartman F., Rambosson M., Brossel J., Kastler A., Compt. Rend.

246, 1522, 1958.

110. Dicke R.H., Phys. Rev. 89, 472, 1953.

111. Wittke J.P., Dicke R.H., Phys. Rev. 96, 530, 1954; Wittke J.P.,

Thesis, Princeton University, 1954.

112. Kastler A., Holweck Lecture, Proc. Phys. Soc. A67, 853, 1954.

113. Dehmelt H.G., Phys. Rev. 103, 1125, 1956.

114. Pebay-Peyroula J.C., Brossel J., Kastler A., Compt. Rend. 244,

57, 1957.

115. Shimoda K., Nishikawa T., J. Phys. Soc. Japan 6, 512, 1951.

116. Series G.W., Taylor M.J., Colloque CNRS, No. 86, Paris, 1958.

117. De Grasse R.W., Schulz-du Bois E.0., Scovil H.E.D., Bell. Syst.

Technic. Jorun. 38, 305, 1959.

118. Schulz-du Bois E.0., Bell. Syst. Technic. Journ. 38, 271, 1959.

119. Schulz-Du Bois E.0., Scovil H.E.D., De Grasse R.W., Bell. Syst.



Technic. Journ. 38, 335, 1959.

120. Erb E., Motchane J.L., Uebersfeld J., Compt. Rend. 246, 3050,

1958; Uebersfeld J., Rev. univers. mines. 15, 594, 1959;

Abraham M., McCausland M.A.H., Robinson F.N.H., Phys. Rev.

Letters 2, 449, 1959.

121. Cowen J.A., Schafer W.R., Spence R.D., Phys. Rev. Letters 3, 13,

1959.

122. Bloembergen N., Shapiro S., Pershan P.S., Artman J.O., Phys.

Rev. 114, 445, 1959.

BOOKS AND SURVEY PAPERS ON ELECTRONIC PARAMAGNETIC RESONANCE

1. Gordi V., Smit V., Trambarullo R., Radiospektroskopiya [Radio

Spectroscopy], GITTL [State Unified Publishing House for

Technical and Theoretical Literature], Moscow, 1955.

2. Bleaney B., Stevens K.W.H., Paramagnetic resonance, Rep. Progr.

Phys. 16, 108, 1953.

3. Bowers K.D., Owen J., Paramagnetic resonance II, Rep. Progr.

Phys. 18, 304, 1955.

4. Ingram D., Spektroskopiya na vysokikh i sverkhvysokikh chastotakh

[Spectroscopy at high and superhigh frequencies], IL, Moscow,

1959.

5. Ingram D.J.E., Free radicals as studied by electron spin reso-

nance, London, 1958.

6. Wertz J.E., Nuclear and electronic paramagnetic resonance, Chem.

Rev. 55, 829, 1955.

7. Pryce M.H.L., Paramagnetism in crystals, Nuovo cimento 6, suppl.

No. 3, 817, 1957.

8. Gorter C.J., Paramagnetic relaxation, Nuovo cimento 6, suppl.

* No. 3, 887, 1957.

9. Van Vieck J.H., Line-Breadths and the theory of magnetism,

- 467 -



Nuovo cimento 6, suppl. No. 3, 993, 1957.

10. Van Vleck J.H., The concept of temperature in magnetism, Nuovo

cimento 6, suppl. No. 3, 1081, 1957.

11. Low W., Paramagnetic resonance, New York - London, 1960.

12. Khutsishvili G.R., Effekt Overkhauzera i rodstvennyye yavleniya,

[The Overhauser effect and kindred phenomena], UFN (Progress in

the physical sciences], 61, 9, 1960.

Manu-
script
Page
No. [Footnotes]
407 It should be remembered that g may be either positive or

negative.

421 Such devices are customarily called masers abroad, which
stands for "microwave amplification by stimulated emission
of radiation."

422 We know that such splittings can be readily attained in
magnetic fields of readily accessible intensities.

423 This formula pertains to an amplifier that is turned on
with the aid of a ferrite circulator.

425 The misprints that have crept into the formulas [45] have
been corrected in (46].

455 Alignment of atoms, unlike their polarization, denotes that
levels with magnetic numbers M and --M have equal popula-
tions; levels with different M are unequally populated.
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